test_seq_conv.py 9.6 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
import unittest
import numpy as np
import random
from op_test import OpTest


class TestSeqProject(OpTest):
    def setUp(self):
        self.init_test_case()
        self.op_type = 'sequence_conv'

        if self.context_length == 1 \
                and self.context_start == 0 \
                and self.padding_trainable:
            print "If context_start is 0 " \
                  "and context_length is 1," \
                  " padding_trainable should be false."
            return

        # one level, batch size
        x = np.random.uniform(0.1, 1, [self.input_size[0],
                                       self.input_size[1]]).astype('float32')

        self.begin_pad = np.max([0, -self.context_start])
        self.end_pad = np.max([0, self.context_start + self.context_length - 1])
        self.total_pad = self.begin_pad + self.end_pad
        if self.total_pad == 0:
            self.total_pad = 1

        # PaddingData mast be not empty.
        # Otherwise(EnforceNotMet: enforce numel() > 0 failed, 0 <= 0)
        padding_data = np.random.uniform(
            0.1, 1, [self.total_pad, self.input_size[1]]).astype('float32')
        w = np.random.uniform(
            0.1, 1, [self.context_length, self.input_size[1]]).astype('float32')
        self.inputs = {
            'X': (x, self.lod),
            'PaddingData': (padding_data, [[0, self.total_pad]]),
            'Filter': (w, [[0, self.context_length]])
        }
        self.attrs = {
            'context_start': self.context_start,
            'context_length': self.context_length,
            'padding_trainable': self.padding_trainable,
            'context_stride': self.context_stride
        }
        out = np.zeros((self.input_size[0], 1)).astype('float32')
        self.outputs = {'Out': out}
        self.compute()

    def compute(self):
        x, lod = self.inputs['X']
        filter = self.inputs['Filter']
        pading_data, _ = self.inputs['PaddingData']
        out = np.zeros((self.input_size[0], self.context_length *
                        self.input_size[1])).astype('float32')
        lod = lod[0]
        begin_pad = np.max([0, -self.context_start])

        for i in range(len(lod) - 1):
            for j in range(self.context_length):
                in_begin = lod[i] + self.context_start + j
                in_end = lod[i + 1] + self.context_start + j
                out_begin = lod[i]
                out_end = lod[i + 1]
                if in_begin < lod[i]:
                    pad_size = np.min([lod[i] - in_begin, lod[i + 1] - lod[i]])
                    if self.padding_trainable:
                        sub_w = pading_data[j:j + pad_size, :]
                        out[lod[i]:lod[i] + pad_size, j * self.input_size[1]:(
                            j + 1) * self.input_size[1]] = sub_w
                    out_begin = lod[i] + pad_size
                    in_begin = lod[i]

                if in_end > lod[i + 1]:
                    pad_size = np.min(
                        [in_end - lod[i + 1], lod[i + 1] - lod[i]])
                    if self.padding_trainable:
                        sub_w = pading_data[begin_pad + self.context_start + j -
                                            pad_size:begin_pad +
                                            self.context_start + j, :]
                        out[lod[i + 1] - pad_size:lod[i + 1], j * self.
                            input_size[1]:(j + 1) * self.input_size[1]] = sub_w
                    in_end = lod[i + 1]
                    out_end = lod[i + 1] - pad_size
                if in_end <= in_begin:
                    continue

                in_sub = x[in_begin:in_end, :]
                out[out_begin:out_end, j * self.input_size[1]:(j + 1) *
                    self.input_size[1]] += in_sub

        filter_dim = filter[0].shape
        output_dim = self.outputs['Out'].shape
        filter[0].shape = filter_dim[0] * filter_dim[1]
        self.outputs['Out'].shape = (output_dim[0], )
        np.dot(out, filter[0], out=self.outputs['Out'])
        filter[0].shape = filter_dim
        self.outputs['Out'].shape = output_dim

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.padding_trainable:
            self.check_grad(
                set(['X', 'PaddingData', 'Filter']),
                'Out',
                max_relative_error=0.05)

    def test_check_grad_input(self):
        self.check_grad(
            ['X'],
            'Out',
            max_relative_error=0.05,
            no_grad_set=set(['PaddingData', 'Filter']))

    def test_check_grad_padding_data(self):
        if self.padding_trainable:
            self.check_grad(
                ['PaddingData'],
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['X', 'Filter']))

    def test_check_grad_Filter(self):
        self.check_grad(
            ['Filter'],
            'Out',
            max_relative_error=0.05,
            no_grad_set=set(['X', 'PaddingData']))

C
chengduoZH 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    def test_check_grad_input_filter(self):
        self.check_grad(
            ['X', 'Filter'],
            'Out',
            max_relative_error=0.05,
            no_grad_set=set(['PaddingData']))

    def test_check_grad_padding_input(self):
        if self.padding_trainable:
            self.check_grad(
                ['X', 'PaddingData'],
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['Filter']))

    def test_check_grad_padding_filter(self):
        if self.padding_trainable:
            self.check_grad(
                ['PaddingData', 'Filter'],
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['X']))

C
chengduoZH 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    def init_test_case(self):
        self.input_row = 11
        self.context_start = 0
        self.context_length = 1
        self.padding_trainable = False
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
        self.lod = [[0, 4, 5, 8, self.input_row]]


class TestSeqProjectCase1(TestSeqProject):
    def init_test_case(self):
        self.input_row = 11
        self.context_start = -1
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
        self.lod = [[0, 4, 5, 8, self.input_row]]


class TestSeqProjectCase2(TestSeqProject):
    def init_test_case(self):
        self.input_row = 25
        self.context_start = 2
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
        idx = range(self.input_size[0])
        del idx[0]
        self.lod = [[0] + np.sort(random.sample(idx, 8)).tolist() +
                    [self.input_size[0]]]


'''
class TestSeqProjectCases(TestSeqProject):
    def setUp(self):
        self.init_test_case()
        self.op_type = 'sequence_project'

        num = 0
        for context_start in [-5, -3, -1, 0, 3]:
            for context_length in [1, 2, 5, 7]:
                for batch_size in [1, 2, 5, 7]:
                    for padding_trainable in [False, True]:

                        if context_length == 1 and context_start == 0 and padding_trainable:
                            continue

                        self.context_start = context_start
                        self.context_length = context_length
                        self.padding_trainable = padding_trainable
                        self.input_size = [batch_size, 23]
                        x = np.random.uniform(0.1, 1,
                                              self.input_size).astype('float32')
                        self.lod = [[0, self.input_size[0]]]
                        if self.input_size[0] > 2:
                            idx = range(self.input_size[0])
                            del idx[0]
                            self.lod = [
                                [0] + np.sort(random.sample(idx, 2)).tolist() +
                                [self.input_size[0]]
                            ]

                        self.begin_pad = np.max([0, -self.context_start])
                        self.end_pad = np.max([0, self.context_start + self.context_length - 1])
                        self.total_pad = self.begin_pad + self.end_pad
                        if self.total_pad == 0:
                            self.total_pad = 1
                        # PaddingData mast be not empty. Otherwise(EnforceNotMet: enforce numel() > 0 failed, 0 <= 0)
                        padding_data = np.random.uniform(
                            0.1, 1, [self.total_pad, self.input_size[1]]).astype('float32')

                        self.inputs = {
                            'X': (x, self.lod),
                            'PaddingData': (padding_data, [[0, self.total_pad]])
                        }
                        self.attrs = {
                            'context_start': self.context_start,
                            'context_length': self.context_length,
                            'padding_trainable': self.padding_trainable,
                            'context_stride': self.context_stride
                        }
                        out = np.zeros((self.input_size[0], self.input_size[1] *
                                        self.context_length)).astype('float32')
                        self.outputs = {'Out': out}
                        print num
                        print self.attrs
                        print batch_size
                        print padding_trainable
                        print "$$$$$$$$$$$$$"

                        self.compute()
                        self.test_check_output()

                        num += 1
'''

if __name__ == '__main__':
    unittest.main()