test_layers.py 9.1 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
Y
Yu Yang 已提交
14
from __future__ import print_function
Q
Qiao Longfei 已提交
15 16
import unittest

Q
Qiao Longfei 已提交
17 18
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.nets as nets
Y
Yu Yang 已提交
19
from paddle.v2.fluid.framework import Program, program_guard
Q
Qiao Longfei 已提交
20
from paddle.v2.fluid.param_attr import ParamAttr
Y
Yu Yang 已提交
21 22 23 24


class TestBook(unittest.TestCase):
    def test_fit_a_line(self):
25
        program = Program()
Y
Yu Yang 已提交
26 27 28 29 30 31 32 33
        with program_guard(program, startup_program=Program()):
            x = layers.data(name='x', shape=[13], dtype='float32')
            y_predict = layers.fc(input=x, size=1, act=None)
            y = layers.data(name='y', shape=[1], dtype='float32')
            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)
            program.append_backward(avg_cost)
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35
        print(str(program))
Y
Yu Yang 已提交
36 37

    def test_recognize_digits_mlp(self):
38
        program = Program()
Y
Yu Yang 已提交
39 40 41 42 43 44
        with program_guard(program, startup_program=Program()):
            # Change g_program, so the rest layers use `g_program`
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
45 46 47 48
            predict = layers.fc(input=[hidden2, hidden1],
                                size=10,
                                act='softmax',
                                param_attr=["sftmax.w1", "sftmax.w2"])
Y
Yu Yang 已提交
49 50 51 52 53
            cost = layers.cross_entropy(input=predict, label=label)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)

        print(str(program))
54 55

    def test_simple_conv2d(self):
F
fengjiayi 已提交
56
        program = Program()
Y
Yu Yang 已提交
57 58 59 60 61
        with program_guard(program, startup_program=Program()):
            images = layers.data(name='pixel', shape=[3, 48, 48], dtype='int32')
            layers.conv2d(input=images, num_filters=3, filter_size=[4, 4])

        print(str(program))
Y
Yu Yang 已提交
62

63 64
    def test_conv2d_transpose(self):
        program = Program()
Y
Yu Yang 已提交
65 66 67 68
        with program_guard(program):
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            layers.conv2d_transpose(input=img, num_filters=10, output_size=28)
        print(str(program))
69

F
fengjiayi 已提交
70
    def test_recognize_digits_conv(self):
F
fengjiayi 已提交
71
        program = Program()
Y
Yu Yang 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
        with program_guard(program, startup_program=Program()):
            images = layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu")

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
            avg_cost = layers.mean(x=cost)

            program.append_backward(avg_cost)

        print(str(program))
98

Q
QI JUN 已提交
99 100
    def test_word_embedding(self):
        program = Program()
Y
Yu Yang 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        with program_guard(program, startup_program=Program()):
            dict_size = 10000
            embed_size = 32
            first_word = layers.data(name='firstw', shape=[1], dtype='int64')
            second_word = layers.data(name='secondw', shape=[1], dtype='int64')
            third_word = layers.data(name='thirdw', shape=[1], dtype='int64')
            forth_word = layers.data(name='forthw', shape=[1], dtype='int64')
            next_word = layers.data(name='nextw', shape=[1], dtype='int64')

            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
            predict_word = layers.fc(input=hidden1,
                                     size=dict_size,
                                     act='softmax')
            cost = layers.cross_entropy(input=predict_word, label=next_word)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)

        print(str(program))
Q
Qiao Longfei 已提交
145 146 147

    def test_linear_chain_crf(self):
        program = Program()
Y
Yu Yang 已提交
148
        with program_guard(program, startup_program=Program()):
Q
Qiao Longfei 已提交
149
            label_dict_len = 10
Y
Yu Yang 已提交
150 151 152
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden = layers.fc(input=images, size=128)
Q
Qiao Longfei 已提交
153 154 155 156
            crf = layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Q
Qiao Longfei 已提交
157 158 159 160 161
            layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
162
            self.assertNotEqual(crf, None)
Q
Qiao Longfei 已提交
163
            self.assertNotEqual(crf_decode, None)
Y
Yu Yang 已提交
164 165

        print(str(program))
Q
QI JUN 已提交
166

167 168 169 170 171 172 173 174 175 176
    def test_sigmoid_cross_entropy(self):
        program = Program()
        with program_guard(program):
            dat = layers.data(name='data', shape=[10], dtype='float32')
            lbl = layers.data(name='label', shape=[10], dtype='float32')
            self.assertIsNotNone(
                layers.sigmoid_cross_entropy_with_logits(
                    x=dat, label=lbl))
        print(str(program))

Y
yangyaming 已提交
177
    def test_sequence_expand(self):
Y
yangyaming 已提交
178 179 180 181 182
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=1)
Y
yangyaming 已提交
183
            self.assertIsNotNone(layers.sequence_expand(x=x, y=y))
Y
yangyaming 已提交
184 185
        print(str(program))

Y
yangyaming 已提交
186 187 188 189 190 191 192
    def test_lstm_unit(self):
        program = Program()
        with program_guard(program):
            x_t_data = layers.data(
                name='x_t_data', shape=[10, 10], dtype='float32')
            x_t = layers.fc(input=x_t_data, size=10)
            prev_hidden_data = layers.data(
Y
yangyaming 已提交
193 194
                name='prev_hidden_data', shape=[10, 30], dtype='float32')
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
195 196 197 198 199 200 201 202
            prev_cell_data = layers.data(
                name='prev_cell', shape=[10, 30], dtype='float32')
            prev_cell = layers.fc(input=prev_cell_data, size=30)
            self.assertIsNotNone(
                layers.lstm_unit(
                    x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell))
        print(str(program))

Y
yangyaming 已提交
203 204 205 206 207 208 209 210 211
    def test_sequence_softmax(self):
        program = Program()
        with program_guard(program):
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            seq = layers.fc(input=seq_data, size=20)
            self.assertIsNotNone(layers.sequence_softmax(x=seq))
        print(str(program))

Q
qijun 已提交
212 213 214
    def test_get_places(self):
        program = Program()
        with program_guard(program):
Q
qijun 已提交
215
            x = layers.get_places(device_count=4)
Y
Yang Yu 已提交
216
            self.assertIsNotNone(x)
Q
qijun 已提交
217 218
        print(str(program))

219 220 221 222 223 224 225 226
    def test_sequence_reshape(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
            self.assertIsNotNone(out)
        print(str(program))

Y
Yu Yang 已提交
227 228 229

if __name__ == '__main__':
    unittest.main()