test_CRFLayerGrad.cpp 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
P
Peng Li 已提交
16
#include "ModelConfig.pb.h"
17 18
#include "paddle/gserver/layers/DataLayer.h"
#include "paddle/gserver/layers/LinearChainCRF.h"
P
Peng Li 已提交
19
#include "paddle/trainer/Trainer.h"
20 21

#include "LayerGradUtil.h"
P
Peng Li 已提交
22
#include "TestUtil.h"
23

P
Peng Li 已提交
24
using namespace paddle;  // NOLINT
25

P
Peng Li 已提交
26 27
DECLARE_int32(gpu_id);
DECLARE_bool(thread_local_rand_use_global_seed);
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

static inline bool getNextSequence(std::vector<int>& seq, int numClasses) {
  for (auto& v : seq) {
    if (++v < numClasses) {
      return true;
    }
    v = 0;
  }
  return false;
}

// log(exp(x) + exp(y))
static inline real logSum(real x, real y) {
  real maxValue = std::max(x, y);
  if (std::isinf(maxValue)) {
    return -std::numeric_limits<real>::infinity();
  } else {
    return maxValue + log(exp(x - maxValue) + exp(y - maxValue));
  }
}

static inline std::vector<int> genRandLabels(int numClasses, int length) {
  std::vector<int> labels(length);
  for (int i = 0; i < length; ++i) {
    labels[i] = rand() % numClasses;  // NOLINT
  }
  return labels;
}

TEST(CRFLayer, cost) {
  const int numClasses = 4;
  CpuVector para(numClasses * (numClasses + 2));
  real* a = para.getData();
  real* b = para.getData() + numClasses;
  real* w = para.getData() + 2 * numClasses;
  LinearChainCRF crf(4, para.getData());
  for (int length : {1, 2, 3, 10}) {
    for (int tries = 0; tries < 10; ++tries) {
      CpuMatrix x(length, numClasses);
      x.randomizeUniform();
      para.randnorm(0, 2);

      std::vector<int> goldenLabels = genRandLabels(numClasses, length);

      real cost = crf.forward(x.getData(), goldenLabels.data(), length);

      real logZ = -std::numeric_limits<real>::infinity();
      real logNominator = -std::numeric_limits<real>::infinity();
      std::vector<int> testResult(length, 0);
      do {
        real score = a[testResult.front()];
        score += x.getElement(0, testResult.front());
        for (int k = 1; k < length; ++k) {
          score += x.getElement(k, testResult[k]) +
                   w[numClasses * testResult[k - 1] + testResult[k]];
        }
        score += b[testResult.back()];
        logZ = logSum(logZ, score);

        if (goldenLabels == testResult) {
          logNominator = score;
        }
      } while (getNextSequence(testResult, numClasses));

      real trueCost = -logNominator + logZ;

      real diff = fabs(trueCost - cost);
      diff /= fabs(cost) < fabs(trueCost) ? fabs(cost) : fabs(trueCost);
P
Peng Li 已提交
96 97
      VLOG(1) << "cost=" << cost << " trueCost=" << trueCost << " diff=" << diff
              << std::endl;
98 99 100 101 102 103 104 105 106
      if (typeid(real) == typeid(double)) {  // NOLINT
        EXPECT_LE(diff, 1e-10);
      } else {
        EXPECT_LE(diff, 5e-3);
      }
    }
  }
}

P
Peng Li 已提交
107
inline real epsilon() { return typeid(real) == typeid(double) ? 1e-10 : 0.06; }
108 109 110 111 112 113 114

TestConfig initTestConfig(size_t numClasses, bool withWeight) {
  TestConfig config;
  config.layerConfig.set_type("crf");
  config.layerConfig.set_size(numClasses);
  config.biasSize = 0;

P
Peng Li 已提交
115 116 117 118
  config.inputDefs.push_back({INPUT_SEQUENCE_DATA,
                              "layer_0",
                              numClasses,
                              numClasses * (numClasses + 2)});
119
  config.layerConfig.add_inputs();
P
Peng Li 已提交
120 121
  config.inputDefs.push_back(
      {INPUT_SEQUENCE_LABEL, "layer_label", numClasses, 0});
122 123 124
  config.layerConfig.add_inputs();

  if (withWeight) {
P
Peng Li 已提交
125
    config.inputDefs.push_back({INPUT_DENSE_DIM_DATA, "layer_weight", 1, 0});
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    config.layerConfig.add_inputs();
  }

  return config;
}

TEST(Layer, CRFLayer) {
  size_t numClasses = 10;
  for (int tries = 0; tries < 5; ++tries) {
    TestConfig config = initTestConfig(numClasses, /* withWeight= */ false);
    for (int length : {1, 3, 100}) {
      // Not support GPU now
      testLayerGrad(config,
                    "crf",
                    length,
                    /* trans= */ false,
                    /* useGpu= */ false,
                    /* useWeight= */ false,
                    epsilon());
    }
  }
}

TEST(Layer, CRFLayerUseWeight) {
  size_t numClasses = 10;
  for (int tries = 0; tries < 5; ++tries) {
    TestConfig config = initTestConfig(numClasses, /* withWeight= */ true);
    for (int length : {1, 3, 100}) {
      // Not support GPU now
      testLayerGrad(config,
                    "crf",
                    length,
                    /* trans= */ false,
                    /* useGpu= */ false,
                    /* useWeight= */ false,
                    epsilon());
    }
  }
}

int main(int argc, char** argv) {
  initMain(argc, argv);
  hl_start();
  hl_init(FLAGS_gpu_id);
  FLAGS_thread_local_rand_use_global_seed = true;
  srand(1);
  testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}