nn.py 309.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
88
    'group_norm',
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104 105 106
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
107
    'resize_nearest',
X
Xin Pan 已提交
108 109 110 111 112 113
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
114
    'selu',
X
Xin Pan 已提交
115 116 117
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
118
    'margin_rank_loss',
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
162
    'space_to_depth',
W
whs 已提交
163
    'affine_grid',
S
sneaxiy 已提交
164
    'sequence_reverse',
165
    'affine_channel',
B
barrierye 已提交
166
    'similarity_focus',
M
minqiyang 已提交
167
    'hash',
D
dengkaipeng 已提交
168
    'grid_sampler',
G
gmcather 已提交
169 170
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
171
    'bilinear_tensor_product',
Y
Yu Yang 已提交
172 173 174 175 176 177 178 179 180
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
181
       is_test=False,
182
       name=None):
Y
Yu Yang 已提交
183
    """
184
    **Fully Connected Layer**
Y
Yu Yang 已提交
185

186 187 188 189 190 191 192 193
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
194
    to the output as well.
C
caoying03 已提交
195

C
caoying03 已提交
196
    This process can be formulated as follows:
197 198 199

    .. math::

200
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
201 202 203

    In the above equation:

C
caoying03 已提交
204 205 206 207
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
208
    * :math:`Act`: The activation function.
C
caoying03 已提交
209
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
210 211

    Args:
R
ranqiu 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
227 228
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
229
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
230
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
231
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
232

233
    Returns:
F
fengjiayi 已提交
234
        Variable: The transformation result.
235 236

    Raises:
C
caoying03 已提交
237
        ValueError: If rank of the input tensor is less than 2.
238 239 240 241

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
242
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
243
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
244
    """
C
caoying03 已提交
245

C
caoying03 已提交
246
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
247 248 249 250

    dtype = helper.input_dtype()

    mul_results = []
251 252
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
253 254 255
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
256

Y
Yu Yang 已提交
257
        w = helper.create_parameter(
258
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
259
        tmp = helper.create_variable_for_type_inference(dtype)
260
        helper.append_op(
261 262 263
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
264
            outputs={"Out": tmp},
M
mozga-intel 已提交
265 266
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
267 268 269 270
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
271
    else:
X
Xin Pan 已提交
272
        pre_bias = helper.create_variable_for_type_inference(dtype)
273
        helper.append_op(
274 275 276
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
277
            attrs={"use_mkldnn": False})
278 279 280 281
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
282 283


284 285 286
def embedding(input,
              size,
              is_sparse=False,
287
              is_distributed=False,
288 289 290
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
291
    """
292 293
    **Embedding Layer**

294
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
295 296
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
297 298 299

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
300 301

    Args:
302 303 304 305 306
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
307
        is_distributed(bool): Whether to run lookup table from remote parameter server.
308 309
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
310
            with zeros whenever lookup encounters it in :attr:`input`. If
311
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
312 313
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
314
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
315

316 317 318
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
319

320 321
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
322

C
chengduoZH 已提交
323
          dict_size = len(dataset.ids)
324
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
325
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
326 327 328 329 330
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
331
    tmp = helper.create_variable_for_type_inference(dtype)
332 333
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
334 335 336 337 338
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
339 340 341 342 343
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
344 345 346
    return tmp


W
wopeizl 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
363

W
wopeizl 已提交
364 365 366 367 368 369 370 371 372 373 374
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
375

W
wopeizl 已提交
376 377 378 379
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
380

W
wopeizl 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
467 468


Y
Yibing Liu 已提交
469 470 471 472 473 474 475 476 477 478 479
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
480 481
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
482 483 484
    """
    **Dynamic LSTMP Layer**

485 486 487 488 489 490
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
491 492 493 494 495

    The formula is as follows:

    .. math::

496
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
497

498
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
499

500
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
501

502
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
503

504
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
505

506
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
507

508
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
509

Y
Yibing Liu 已提交
510 511 512 513 514 515
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
516
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
517
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
518
          bias vector).
Y
Yibing Liu 已提交
519 520 521
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
522
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
523
    * :math:`h`: The hidden state.
524
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
525 526
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
527
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
528
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
529
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
530 531
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
532 533 534 535

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
536

Y
Yibing Liu 已提交
537 538 539 540 541 542 543 544 545 546 547 548
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
549
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
550 551
                               hidden-hidden weight and projection weight.

552 553
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
554 555
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
556 557
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
558
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
559 560 561 562 563

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
564
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
565 566 567 568 569 570
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
571
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
572 573 574
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
575
                                - The shape is (1 x 7D).
C
chengduo 已提交
576 577 578 579 580

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
581 582 583 584 585 586 587 588 589
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
590
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
591 592
                              default "tanh".
        proj_activation(str): The activation for projection output.
593
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
594 595
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
596 597
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
598 599

    Returns:
600 601 602 603
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
604 605

    Examples:
606

Y
Yibing Liu 已提交
607 608
        .. code-block:: python

609 610 611 612
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
613
            hidden_dim, proj_dim = 512, 256
614
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
615
                                     act=None, bias_attr=None)
616 617 618
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
619 620 621 622
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
623
    """
624

C
chengduo 已提交
625
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
626
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
627
    size = size // 4
Y
Yibing Liu 已提交
628 629 630 631 632 633 634 635 636 637
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
638 639 640 641 642 643
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
672 673 674 675 676 677 678 679 680
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
681
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
682

683
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
684
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
685

G
guosheng 已提交
686 687 688 689 690 691 692 693 694
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
695

G
guosheng 已提交
696
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
697

G
guosheng 已提交
698
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
699 700
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
701 702 703 704
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
705
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
706 707

    Args:
708 709
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
710
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
711
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
712 713
            is the hidden size.
        size(int): The dimension of the gru cell.
714
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
715 716
            hidden-hidden weight matrix. Note:

717
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
718
              :math:`D` is the hidden size.
719
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
720
              The first part are weights of the update gate and reset gate with
721
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
722
              candidate hidden state with shape :math:`(D \\times D)`.
723 724 725 726 727

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
728
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
729
            the bias in the update gate, reset gate and candidate calculations.
730 731 732
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
733 734
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
735
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
736 737 738
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
739
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
740
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
741 742 743 744
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
745 746

    Returns:
G
guosheng 已提交
747
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
748
            and sequence length is the same with the input.
749

G
guosheng 已提交
750
    Examples:
751

G
guosheng 已提交
752 753
        .. code-block:: python

754 755 756 757
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
758
            hidden_dim = 512
759
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
760 761 762 763 764 765 766 767 768 769
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
770
    batch_size = input.shape[0]
G
guosheng 已提交
771
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
772
    if h_0:
G
guosheng 已提交
773
        assert h_0.shape == (
Y
Yancey 已提交
774 775 776
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
777

X
Xin Pan 已提交
778 779 780 781
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
800 801 802
def gru_unit(input,
             hidden,
             size,
803 804
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
805
             activation='tanh',
806
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
807
    """
808
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
809

810 811
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
812

813
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
814

815
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
816

817
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
818 819

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
820 821 822
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
823 824
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

825 826
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
827 828 829
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
830 831 832

    Args:
        input (Variable): The fc transformed input value of current step.
833
        hidden (Variable): The hidden value of gru unit from previous step.
834
        size (integer): The input dimension value.
835 836 837 838 839 840 841 842 843 844 845 846 847 848
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
849
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
850
            the bias in the update gate, reset gate and candidate calculations.
851 852 853
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
854 855
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
856 857 858 859
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
860

861 862 863 864 865 866
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
867

868
             # assuming we have x_t_data and prev_hidden of size=10
869
             x_t = fluid.layers.fc(input=x_t_data, size=30)
870 871
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
872 873 874 875 876 877 878 879 880 881 882 883

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
884
    size = size // 3
Y
Yu Yang 已提交
885 886

    # create weight
887 888
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
889

X
Xin Pan 已提交
890 891 892
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
893
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
894
    # create bias
895
    if helper.bias_attr:
Y
Yu Yang 已提交
896 897 898
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
899
        inputs['Bias'] = bias
Y
Yu Yang 已提交
900 901 902

    helper.append_op(
        type='gru_unit',
903
        inputs=inputs,
Y
Yu Yang 已提交
904 905 906 907 908 909
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
910 911
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
912 913 914 915 916
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
917
@templatedoc()
918
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
919 920 921 922 923 924 925
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
926
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
927 928 929 930
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
931 932 933
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
934 935

    """
Y
Yu Yang 已提交
936 937 938 939 940 941
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
942 943 944 945 946 947 948 949
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
965 966 967 968
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
969

W
wopeizl 已提交
970 971
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
972

W
wopeizl 已提交
973
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
974

W
wopeizl 已提交
975
        label(${label_type}): ${label_comment}
976

W
wopeizl 已提交
977 978
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
979

W
wopeizl 已提交
980 981
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
982

W
wopeizl 已提交
983 984 985 986 987 988 989 990 991 992
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
993
                "Transition": transition,
W
wopeizl 已提交
994 995
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
996

W
wopeizl 已提交
997
    return viterbi_path
Y
Yu Yang 已提交
998 999


Y
yi.wu 已提交
1000
@templatedoc()
F
fengjiayi 已提交
1001
def cos_sim(X, Y):
Y
Yu Yang 已提交
1002
    """
Y
yi.wu 已提交
1003 1004 1005
    ${comment}

    Args:
1006 1007
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1008

Y
yi.wu 已提交
1009
    Returns:
1010
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1011
    """
F
fengjiayi 已提交
1012
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1013 1014 1015
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1026 1027 1028 1029 1030
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1031
            dropout_implementation="downgrade_in_infer"):
1032 1033 1034 1035 1036
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1037
    training. The dropout operator randomly sets (according to the given dropout
1038 1039 1040 1041
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1042 1043
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1044 1045 1046 1047 1048 1049 1050
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1062
                                           dropout op can be removed from the program.
P
phlrain 已提交
1063
                                           the program will be efficient
1064

P
phlrain 已提交
1065

1066 1067

    Returns:
1068
        Variable: A tensor variable is the shape with `x`.
1069 1070

    Examples:
1071

1072 1073
        .. code-block:: python

1074 1075
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1076 1077
    """

F
fengjiayi 已提交
1078
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1079 1080 1081
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1082 1083 1084 1085

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1086 1087 1088 1089 1090
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1091 1092 1093 1094
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1095 1096
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1097
        })
1098 1099 1100
    return out


1101
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1102
    """
Y
Yibing Liu 已提交
1103 1104
    **Cross Entropy Layer**

1105 1106 1107
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1108 1109

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1110
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1111

Y
Yibing Liu 已提交
1112
        .. math::
Y
yangyaming 已提交
1113

Y
Yibing Liu 已提交
1114 1115 1116
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1117 1118
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1119 1120 1121 1122 1123

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1124
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1125 1126 1127
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1128 1129
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1130
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1131

Y
Yibing Liu 已提交
1132
    Args:
Y
yangyaming 已提交
1133
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1134 1135 1136 1137
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1138
        label (Variable|list): the ground truth which is a 2-D tensor. When
1139 1140 1141 1142
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1143
        soft_label (bool): a flag indicating whether to
1144
                                           interpretate the given labels as soft
1145
                                           labels. Default: `False`.
M
minqiyang 已提交
1146 1147
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1148
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1149 1150 1151 1152 1153

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1154 1155 1156 1157 1158
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1159 1160 1161 1162 1163 1164

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1165
    """
F
fengjiayi 已提交
1166
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1167
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1168 1169 1170 1171 1172
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1173 1174
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1175 1176 1177
    return out


F
fengjiayi 已提交
1178
def square_error_cost(input, label):
Y
Yu Yang 已提交
1179
    """
1180 1181
    **Square error cost layer**

1182 1183
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1184

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1198 1199
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1200 1201

    Returns:
G
guosheng 已提交
1202
        Variable: The tensor variable storing the element-wise squared error \
1203
                  difference of input and label.
1204 1205 1206 1207 1208 1209 1210 1211

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1212
    """
F
fengjiayi 已提交
1213
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1214
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1215 1216 1217 1218 1219 1220
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1221
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1222
    helper.append_op(
F
fengjiayi 已提交
1223 1224
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1225 1226 1227
    return square_out


Y
yi.wu 已提交
1228
@templatedoc()
Y
Yu Yang 已提交
1229 1230 1231 1232
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1233
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1234
    """
Y
yi.wu 已提交
1235
    **Chunk Evaluator**
Y
yi.wu 已提交
1236

Y
yangyaming 已提交
1237
    This function computes and outputs the precision, recall and
1238
    F1-score of chunk detection.
Y
yi.wu 已提交
1239

Y
yi.wu 已提交
1240 1241 1242 1243 1244 1245 1246 1247
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1248

Y
yi.wu 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1274

Y
yi.wu 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1299
    Args:
1300 1301 1302 1303 1304
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1305

Y
yi.wu 已提交
1306
    Returns:
Y
update  
yi.wu 已提交
1307 1308 1309
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1310

Y
yi.wu 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1323
    """
F
fengjiayi 已提交
1324
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1325 1326

    # prepare output
X
Xin Pan 已提交
1327 1328 1329 1330 1331 1332 1333
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1334 1335 1336 1337 1338 1339 1340 1341

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1342 1343 1344 1345
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1346 1347 1348
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1349 1350
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1351
        })
1352 1353
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1354 1355


1356
@templatedoc()
Y
Yu Yang 已提交
1357 1358 1359 1360 1361 1362 1363
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1364 1365
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1366 1367 1368 1369
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1370 1371 1372 1373 1374 1375 1376

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1390

1391 1392
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1393 1394 1395 1396 1397 1398 1399
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1400
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1411
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1412 1413 1414 1415 1416 1417
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1418
def sequence_softmax(input, use_cudnn=False, name=None):
1419 1420 1421
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1422
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1439 1440 1441
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1454 1455
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1456
    softmax_out = helper.create_variable_for_type_inference(dtype)
1457 1458 1459 1460 1461 1462 1463 1464
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1465
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1466
    """
1467
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1468
    has the same shape as the input.
Q
qiaolongfei 已提交
1469

1470 1471 1472 1473 1474 1475
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1476
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1477 1478 1479 1480 1481 1482 1483

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1484
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1485 1486 1487 1488 1489 1490 1491 1492

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1493 1494 1495
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1508 1509
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1510
    softmax_out = helper.create_variable_for_type_inference(dtype)
1511 1512 1513 1514 1515 1516 1517 1518
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1519 1520 1521
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1522 1523
           stride=1,
           padding=0,
1524
           dilation=1,
Y
Yu Yang 已提交
1525 1526 1527
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1528
           use_cudnn=True,
1529 1530
           act=None,
           name=None):
Y
Yu Yang 已提交
1531
    """
C
chengduoZH 已提交
1532
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1533 1534
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1535
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1536 1537 1538 1539 1540 1541 1542
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1543 1544 1545
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1546

1547
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1548

C
chengduoZH 已提交
1549 1550
    .. math::

C
refine  
chengduoZH 已提交
1551
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1552

T
tensor-tang 已提交
1553
    Where:
C
chengduoZH 已提交
1554

1555 1556 1557 1558 1559
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1560
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1561 1562 1563

    Example:

1564 1565
        - Input:

W
weixing02 已提交
1566
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1567

W
weixing02 已提交
1568
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1569

1570
        - Output:
T
tensor-tang 已提交
1571

W
weixing02 已提交
1572
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1573

C
chengduoZH 已提交
1574
        Where
1575 1576

        .. math::
C
chengduoZH 已提交
1577

W
weixing02 已提交
1578 1579
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1580 1581

    Args:
1582
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1583
        num_filters(int): The number of filter. It is as same as the output
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1612 1613
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1614 1615
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1616
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1617
            will be named automatically. Default: None
C
chengduoZH 已提交
1618 1619

    Returns:
G
guosheng 已提交
1620
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1621 1622
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1623
    Raises:
1624 1625
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1626

C
chengduoZH 已提交
1627 1628 1629
    Examples:
        .. code-block:: python

1630 1631
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1632 1633 1634
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1635
    assert param_attr is not False, "param_attr should not be False here."
1636
    l_type = 'conv2d'
X
xzl 已提交
1637 1638
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1639
        l_type = 'depthwise_conv2d'
1640 1641 1642 1643

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1644 1645 1646 1647 1648
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1649
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1650

C
chengduoZH 已提交
1651 1652 1653
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1654
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1655

C
chengduoZH 已提交
1656 1657
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1658 1659

    input_shape = input.shape
M
minqiyang 已提交
1660
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1661 1662

    def _get_default_param_initializer():
C
chengduo 已提交
1663 1664
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1665 1666 1667 1668 1669 1670 1671 1672
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1673
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1674

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1689
    helper.append_op(
1690
        type=l_type,
Y
Yu Yang 已提交
1691 1692 1693 1694 1695
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1696 1697 1698
        attrs={
            'strides': stride,
            'paddings': padding,
1699
            'dilations': dilation,
C
chengduoZH 已提交
1700
            'groups': groups,
1701
            'use_cudnn': use_cudnn,
1702
            'use_mkldnn': False,
C
chengduoZH 已提交
1703
        })
Y
Yu Yang 已提交
1704 1705 1706 1707 1708 1709

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1727 1728 1729 1730 1731 1732
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1742 1743
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1744 1745 1746
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1747
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1773
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1774 1775
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1776
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1777 1778
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1779
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1780 1781
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1782
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1783 1784 1785 1786 1787 1788
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1799 1800
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1801 1802
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1803
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1804
            will be named automatically. Default: None.
C
chengduoZH 已提交
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1817 1818
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1819 1820 1821
    """

    l_type = 'conv3d'
C
chengduo 已提交
1822
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1833
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1847 1848 1849
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1850 1851 1852 1853 1854 1855 1856 1857
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1858
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1873
            'use_mkldnn': False
C
chengduoZH 已提交
1874 1875
        })

1876
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1877 1878 1879 1880

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1881
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1882
    """
Y
yangyaming 已提交
1883 1884 1885
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1897
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1898 1899 1900 1901 1902
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1903
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1904 1905 1906 1907 1908 1909 1910

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1911 1912
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1913

L
Luo Tao 已提交
1914 1915
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1916
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1917
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1918
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1919 1920 1921 1922 1923 1924 1925

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1926

Y
yangyaming 已提交
1927
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1928 1929 1930 1931 1932
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1933 1934
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1935
    """
F
fengjiayi 已提交
1936
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1937
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1938 1939
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1940 1941 1942 1943 1944 1945

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1946 1947
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1948

Y
yangyaming 已提交
1949 1950 1951 1952 1953
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1954 1955 1956
    return pool_out


C
add doc  
chengduoZH 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1976
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1977 1978 1979 1980 1981
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1982
def sequence_first_step(input):
L
Luo Tao 已提交
1983
    """
L
Luo Tao 已提交
1984
    This function gets the first step of sequence.
L
Luo Tao 已提交
1985 1986 1987 1988

    .. code-block:: text

       x is a 1-level LoDTensor:
1989
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1990 1991 1992 1993 1994
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1995
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1996
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1997

L
Luo Tao 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2007

Y
yangyaming 已提交
2008
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2009 2010 2011
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2012 2013 2014
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2015
def sequence_last_step(input):
L
Luo Tao 已提交
2016
    """
L
Luo Tao 已提交
2017
    This function gets the last step of sequence.
L
Luo Tao 已提交
2018 2019 2020 2021

    .. code-block:: text

       x is a 1-level LoDTensor:
2022
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2023 2024 2025 2026 2027
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2028
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2029
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2030

L
Luo Tao 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2040

Y
yangyaming 已提交
2041
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2042 2043 2044
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2045 2046 2047
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2048 2049 2050 2051
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2052
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2053 2054 2055 2056 2057
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2058

Y
Yibing Liu 已提交
2059 2060
	- Case:

2061
            Given the input Variable **input**:
2062

2063 2064 2065
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2066

2067
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2068

2069
            the output Variable will be
2070

2071 2072 2073
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2074 2075

    NOTE: The first dimension size of **input**, **offset** and **length**
2076
          should be equal. The **offset** should start from 0.
2077

Y
Yibing Liu 已提交
2078
    Args:
2079
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2080
                         sequences.
Y
Yibing Liu 已提交
2081 2082 2083 2084 2085 2086
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2087
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2098
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2099 2100 2101 2102
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2103
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2118
@templatedoc()
Y
Yu Yang 已提交
2119
def pool2d(input,
C
chengduoZH 已提交
2120 2121
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2122 2123
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2124
           global_pooling=False,
C
chengduoZH 已提交
2125
           use_cudnn=True,
2126
           ceil_mode=False,
2127 2128
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2129
    """
F
fengjiayi 已提交
2130
    ${comment}
2131 2132

    Args:
2133 2134 2135
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2136
                          feature, and W is the width of the feature.
2137
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2138
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2139
        pool_type: ${pooling_type_comment}
2140 2141
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
2142 2143 2144
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2145
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2146
                        layer will be named automatically.
2147
        exclusive (bool): Whether to exclude padding points in average pooling
2148
                          mode, default is true
F
fengjiayi 已提交
2149

2150
    Returns:
F
fengjiayi 已提交
2151
        Variable: The pooling result.
F
fengjiayi 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2165 2166 2167 2168
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2169
                            global_pooling=False)
Y
Yu Yang 已提交
2170 2171 2172 2173 2174
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2175

C
chengduoZH 已提交
2176 2177 2178 2179 2180
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2181 2182 2183 2184
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2185 2186
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2187

C
Add doc  
chengduoZH 已提交
2188
    l_type = 'pool2d'
2189 2190

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2191
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2192
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2193 2194

    helper.append_op(
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2206 2207
            "use_mkldnn": False,
            "exclusive": exclusive,
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2221 2222
           name=None,
           exclusive=True):
2223 2224
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2225
    pooling configurations mentioned in input parameters.
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2238
        exclusive (bool): Whether to exclude padding points in average pooling
2239
                          mode, default is true
2240

2241
    Returns:
2242
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2243 2244 2245 2246 2247
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2248

C
chengduoZH 已提交
2249 2250 2251 2252 2253
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2254 2255 2256
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2257

C
chengduoZH 已提交
2258 2259
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2260

2261 2262
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2263
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2264
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2265 2266

    helper.append_op(
2267
        type=l_type,
Y
Yu Yang 已提交
2268 2269 2270 2271 2272 2273 2274
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2275
            "paddings": pool_padding,
2276
            "use_cudnn": use_cudnn,
2277
            "ceil_mode": ceil_mode,
2278 2279
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2292
               data_layout='NCHW',
Y
Yang Yang 已提交
2293
               in_place=False,
2294 2295
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2296
               moving_variance_name=None,
2297 2298
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2299
    """
Q
qiaolongfei 已提交
2300 2301 2302 2303
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2304

Q
qiaolongfei 已提交
2305
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2306

Q
qiaolongfei 已提交
2307 2308
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2309 2310 2311
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2324 2325

    Args:
Q
qiaolongfei 已提交
2326
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2327 2328 2329 2330
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2331 2332 2333 2334 2335 2336 2337 2338
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2339
        data_layout(string, default NCHW): NCHW|NHWC
2340
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2341 2342 2343 2344
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2345
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2346
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2347 2348

    Returns:
Q
qiaolongfei 已提交
2349
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2350 2351 2352 2353 2354 2355 2356

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2357
    """
C
chengduo 已提交
2358
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2381
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2382

2383 2384
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2385 2386 2387
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2388
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2389
        shape=param_shape,
2390 2391 2392 2393 2394 2395 2396
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2397
            trainable=False,
W
wanghaoshuang 已提交
2398
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2399
        shape=param_shape,
2400 2401
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2402 2403 2404 2405 2406 2407

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2408 2409 2410 2411
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2412

X
Xin Pan 已提交
2413 2414
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2432 2433 2434 2435
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2436
            "use_mkldnn": False,
2437
            "fuse_with_relu": fuse_with_relu
2438
        })
Y
Yu Yang 已提交
2439 2440 2441 2442

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2443
@templatedoc()
G
guosheng 已提交
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2454
    ${comment}
G
guosheng 已提交
2455 2456 2457

    The formula is as follows:

Y
yuyang18 已提交
2458
    ..  math::
G
guosheng 已提交
2459 2460 2461 2462 2463 2464 2465

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2466 2467 2468 2469 2470 2471 2472 2473
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2474

G
guosheng 已提交
2475 2476
    Args:
        input(Variable): The input tensor variable.
2477
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2478
            normalization. Default True.
2479
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2480 2481
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2482
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2483
            Default 1.
2484
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2485
            division by zero. Default 1e-05.
G
guosheng 已提交
2486
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2487 2488
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2489 2490
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2491
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2492 2493
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2494
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2495
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2496
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2497 2498 2499
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2500 2501

    Returns:
Y
yuyang18 已提交
2502
        ${y_comment}
G
guosheng 已提交
2503 2504 2505

    Examples:

Y
yuyang18 已提交
2506 2507 2508
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2524
    if shift:
G
guosheng 已提交
2525 2526 2527 2528 2529 2530
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2531 2532 2533 2534 2535
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2629 2630 2631 2632
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2633 2634 2635
                     padding=0,
                     stride=1,
                     dilation=1,
2636
                     groups=None,
C
caoying03 已提交
2637
                     param_attr=None,
2638
                     bias_attr=None,
C
chengduoZH 已提交
2639
                     use_cudnn=True,
2640
                     act=None,
C
caoying03 已提交
2641
                     name=None):
Y
Yu Yang 已提交
2642
    """
2643 2644 2645 2646 2647 2648 2649 2650
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2651 2652
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2653 2654 2655
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2656 2657 2658 2659 2660

    For each input :math:`X`, the equation is:

    .. math::

2661
        Out = \sigma (W \\ast X + b)
2662

2663
    Where:
2664 2665 2666

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2667 2668 2669 2670
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2671

2672 2673 2674 2675
    Example:

        - Input:

2676
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2677

2678
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2679 2680 2681

        - Output:

2682
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2683 2684

        Where
Y
Yu Yang 已提交
2685

2686 2687
        .. math::

2688 2689 2690 2691
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2692 2693

    Args:
2694 2695 2696 2697
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2698 2699 2700 2701
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2730
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2731 2732 2733
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2734
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2735
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2736 2737

    Returns:
2738
        Variable: The tensor variable storing the convolution transpose result.
2739 2740

    Raises:
2741 2742
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2743 2744 2745 2746

    Examples:
       .. code-block:: python

2747 2748
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2749
    """
C
chengduo 已提交
2750
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2751 2752 2753 2754 2755 2756 2757 2758
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2759 2760 2761
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2762 2763 2764
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2765

C
chengduoZH 已提交
2766 2767
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2768

Y
Yu Yang 已提交
2769 2770 2771 2772 2773
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2774

Y
Yu Yang 已提交
2775 2776
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2777

C
chengduoZH 已提交
2778
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2779
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2780
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2781
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2782
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2783 2784 2785
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2786

2787 2788 2789 2790 2791 2792 2793
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2794
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2795
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2796

Y
Yu Yang 已提交
2797 2798 2799
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2800
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2801
    helper.append_op(
2802
        type=op_type,
Y
Yu Yang 已提交
2803 2804
        inputs={'Input': [input],
                'Filter': [img_filter]},
2805
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2806
        attrs={
2807
            'output_size': output_size,
2808 2809 2810 2811 2812
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2813 2814
        })

2815 2816 2817
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2818 2819


2820
def conv3d_transpose(input,
Y
Yu Yang 已提交
2821 2822 2823
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2824 2825 2826
                     padding=0,
                     stride=1,
                     dilation=1,
2827
                     groups=None,
C
caoying03 已提交
2828
                     param_attr=None,
2829
                     bias_attr=None,
C
chengduoZH 已提交
2830
                     use_cudnn=True,
2831
                     act=None,
C
caoying03 已提交
2832
                     name=None):
Y
Yu Yang 已提交
2833
    """
2834
    **Convlution3D transpose layer**
2835

2836
    The convolution3D transpose layer calculates the output based on the input,
2837
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2838 2839 2840 2841 2842 2843
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2844 2845 2846
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2847 2848 2849 2850 2851

    For each input :math:`X`, the equation is:

    .. math::

2852
        Out = \sigma (W \\ast X + b)
2853 2854 2855

    In the above equation:

2856 2857
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2858 2859 2860 2861
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2862

2863 2864 2865 2866
    Example:

        - Input:

2867
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2868

2869
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2870 2871 2872

        - Output:

2873
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2874 2875

        Where
Y
Yu Yang 已提交
2876

2877 2878
        .. math::

2879 2880 2881
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2882 2883

    Args:
2884
        input(Variable): The input image with [N, C, D, H, W] format.
2885 2886 2887
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2888
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2889 2890
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2891
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2892 2893 2894
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2895 2896
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2897
        stride(int|tuple): The stride size. If stride is a tuple, it must
2898 2899
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2900
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2901 2902 2903
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2904 2905 2906 2907 2908
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2918 2919
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2920 2921
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2922 2923
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2924 2925

    Returns:
2926
        Variable: The tensor variable storing the convolution transpose result.
2927 2928

    Raises:
2929 2930
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2931 2932 2933 2934

    Examples:
       .. code-block:: python

2935 2936
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2937
    """
C
chengduo 已提交
2938
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2939 2940
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2941
    if not isinstance(input, Variable):
2942
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2943 2944
    input_channel = input.shape[1]

2945 2946 2947
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2948

C
chengduoZH 已提交
2949 2950 2951
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2952 2953 2954 2955 2956 2957
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2958 2959 2960
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2961

2962
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2963
                         padding[0] - 1) // dilation[0] + 1
2964
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2965
                         padding[1] - 1) // dilation[1] + 1
2966
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2967
                         padding[2] - 1) // dilation[2] + 1
2968
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2969
    else:
2970 2971
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2972

2973
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2974
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2975 2976 2977
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2978
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2979
    helper.append_op(
2980
        type=l_type,
Y
Yu Yang 已提交
2981 2982
        inputs={'Input': [input],
                'Filter': [img_filter]},
2983
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2984 2985 2986 2987
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2988
            'groups': groups,
C
chengduoZH 已提交
2989 2990
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2991

2992 2993
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2994
    return out
Y
yangyaming 已提交
2995 2996


Y
yangyaming 已提交
2997
def sequence_expand(x, y, ref_level=-1, name=None):
2998
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2999 3000 3001 3002
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3003 3004 3005 3006 3007

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3008
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3009
                x.data = [[a], [b], [c], [d]]
3010 3011 3012
                x.dims = [4, 1]

            y is a LoDTensor:
3013 3014
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3015

Y
yangyaming 已提交
3016
            ref_level: 0
3017

Y
yangyaming 已提交
3018
            then output is a 1-level LoDTensor:
3019
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3020
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3021 3022 3023 3024
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3025
                x.data = [[a], [b], [c]]
3026 3027 3028
                x.dims = [3, 1]

            y is a LoDTensor:
3029
                y.lod = [[2, 0, 3]]
3030

Y
yangyaming 已提交
3031
            ref_level: -1
3032

Y
yangyaming 已提交
3033 3034 3035
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3036 3037 3038
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3039 3040
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3041
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3042
                        will be named automatically.
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3053
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3054
    """
Y
yangyaming 已提交
3055
    helper = LayerHelper('sequence_expand', input=x, **locals())
3056
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3057
    tmp = helper.create_variable_for_type_inference(dtype)
3058
    helper.append_op(
Y
yangyaming 已提交
3059 3060 3061 3062 3063
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3064
    return tmp
3065 3066


C
chengduo 已提交
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3123
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3124 3125 3126 3127 3128 3129 3130 3131
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3132
@templatedoc()
3133
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3134 3135 3136 3137 3138
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3139 3140 3141
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3142
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3143 3144 3145 3146
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3147 3148 3149
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3150

F
fengjiayi 已提交
3151
    Returns:
M
minqiyang 已提交
3152
        Variable: The padded sequence batch and the original lengths before
3153
                  padding. All sequences has the same length.
M
minqiyang 已提交
3154

F
fengjiayi 已提交
3155 3156 3157 3158 3159 3160 3161
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3162
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3163
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3164 3165 3166 3167 3168
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3169 3170
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3171 3172 3173 3174

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3175 3176 3177 3178 3179 3180
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3181 3182
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3183
        attrs={'padded_length': maxlen})
3184
    return out, length
F
fengjiayi 已提交
3185 3186


3187
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3188
    """
3189
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3190

3191 3192
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3193 3194 3195 3196 3197 3198 3199 3200 3201
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3202 3203 3204
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3205
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3206 3207 3208 3209 3210 3211

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3212
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3213 3214 3215 3216 3217 3218

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3219 3220
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3235
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3247 3248 3249 3250 3251 3252 3253 3254 3255
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3256 3257
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3258 3259 3260

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3261 3262

    This layer does the search in beams for one time step. Specifically, it
3263 3264 3265 3266 3267 3268
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3269

3270 3271 3272 3273 3274 3275 3276 3277
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3278

3279
    Args:
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3305

3306
    Returns:
3307 3308
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3309 3310 3311 3312

    Examples:
        .. code-block:: python

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3330 3331 3332 3333
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3334 3335 3336
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3337 3338 3339 3340 3341

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3342
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3360 3361 3362 3363 3364 3365 3366
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3367

3368 3369 3370 3371 3372 3373 3374 3375 3376
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3377

3378 3379 3380 3381 3382 3383
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3384

3385 3386 3387 3388 3389 3390 3391 3392
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3393 3394
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3410 3411 3412 3413
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3414
              param_attr=None,
C
caoying03 已提交
3415 3416
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3417 3418 3419 3420
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3421
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3422

3423
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3424

3425
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3426

3427
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3428 3429 3430

            h_t & = o_t tanh(c_t)

3431 3432 3433 3434 3435 3436
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3437 3438 3439

        .. math::

3440
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3441 3442 3443 3444 3445 3446 3447 3448

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3449
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3450 3451

    Args:
Y
yangyaming 已提交
3452 3453 3454 3455 3456 3457
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3458
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3471 3472
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3473 3474

    Returns:
Y
yangyaming 已提交
3475
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3476 3477

    Raises:
3478 3479 3480 3481
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3482 3483 3484 3485 3486 3487

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3488
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3489
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3490
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3507
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3508 3509 3510 3511
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3512 3513
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3514 3515 3516
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3517
    size = cell_t_prev.shape[1]
3518
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3519 3520
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3521
                param_attr=param_attr,
3522
                bias_attr=bias_attr)
Y
yangyaming 已提交
3523
    dtype = x_t.dtype
X
Xin Pan 已提交
3524 3525
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3526 3527 3528 3529 3530 3531 3532 3533 3534

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3535
    return h, c
G
guosheng 已提交
3536 3537


C
caoying03 已提交
3538
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3539
    """
Y
yangyaming 已提交
3540
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3541 3542 3543

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3544
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3545 3546
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3547 3548
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3549
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3550
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3551
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3552 3553
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3554 3555 3556

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3557

G
guosheng 已提交
3558 3559 3560 3561 3562 3563
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3564
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3565 3566 3567 3568
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3569 3570 3571 3572

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3573
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3574 3575 3576
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3577 3578
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3579
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3580 3581
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3582 3583 3584 3585 3586
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3587
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3588 3589 3590 3591
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3592 3593


C
caoying03 已提交
3594
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3595
    """
Y
Yibing Liu 已提交
3596
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3597 3598 3599

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3600 3601 3602
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3603
            must be in the range :math:`[-rank(input), rank(input))`. If
3604
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3605
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3606 3607
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3608
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3609
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3610
                       will be named automatically.
G
guosheng 已提交
3611 3612

    Returns:
Y
Yibing Liu 已提交
3613
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3614

G
guosheng 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3625 3626
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3627 3628 3629 3630 3631 3632 3633

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3634 3635
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3636
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3637 3638
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3639 3640 3641 3642 3643
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3644
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3645 3646 3647 3648
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3649 3650


C
caoying03 已提交
3651
def reduce_max(input, dim=None, keep_dim=False, name=None):
3652
    """
Y
yangyaming 已提交
3653
    Computes the maximum of tensor elements over the given dimension.
3654 3655 3656

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3657
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3658 3659 3660
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3661
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3662 3663
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3664
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3665 3666
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3667 3668 3669

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3670

3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3682 3683 3684 3685 3686 3687 3688

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3689 3690
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3691
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3692 3693
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3694 3695 3696 3697 3698
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3699
            'dim': dim if dim != None else [0],
3700 3701 3702 3703 3704 3705
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3706
def reduce_min(input, dim=None, keep_dim=False, name=None):
3707
    """
Y
yangyaming 已提交
3708
    Computes the minimum of tensor elements over the given dimension.
3709 3710 3711

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3712
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3713 3714 3715
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3716
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3717 3718
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3719
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3720 3721
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3722 3723 3724

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3725

3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3737 3738 3739 3740 3741 3742 3743

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3744 3745
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3746
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3747 3748
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3749 3750 3751 3752 3753
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3754
            'dim': dim if dim != None else [0],
3755 3756 3757 3758
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3759 3760


3761 3762 3763 3764 3765 3766
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3767
        dim (list|int|None): The dimensions along which the product is performed. If
3768 3769
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3770 3771
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3772 3773 3774
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3775
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3776
            layer will be named automatically.
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3791
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3792
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3793 3794 3795 3796 3797 3798 3799

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3800 3801
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3802
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3803 3804
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3805 3806 3807 3808 3809
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3810
            'dim': dim if dim != None else [0],
3811 3812 3813 3814 3815 3816
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3817
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3818
    """
C
caoying03 已提交
3819
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3820 3821 3822

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3823 3824 3825 3826 3827
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3828
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3829
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3830
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3831 3832
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3833 3834

    Returns:
D
dzhwinter 已提交
3835
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3836 3837 3838 3839 3840 3841 3842 3843 3844

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3845 3846
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3862
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3885
    .. math::
3886 3887

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3888 3889 3890 3891 3892

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3893
        x(Variable|list): The input tensor to l2_normalize layer.
3894
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3895 3896
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3897
        epsilon(float): The epsilon value is used to avoid division by zero, \
3898
            the defalut value is 1e-10.
3899
        name(str|None): A name for this layer(optional). If set None, the layer \
3900
            will be named automatically.
C
caoying03 已提交
3901 3902

    Returns:
3903
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3904 3905

    Examples:
3906

C
caoying03 已提交
3907 3908
        .. code-block:: python

3909 3910 3911 3912
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3913 3914
    """

F
fengjiayi 已提交
3915 3916
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3917 3918
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3919 3920
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3921
    helper.append_op(
3922 3923 3924 3925
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3926
        attrs={
3927 3928
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3929 3930
        })
    return out
3931 3932


S
sneaxiy 已提交
3933
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3934
    """
Y
ying 已提交
3935 3936 3937 3938
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3939

C
chengduoZH 已提交
3940
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3941
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3942

3943 3944 3945 3946 3947
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3948
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3949

C
chengduoZH 已提交
3950
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3951
      performs in the following way.
G
guosheng 已提交
3952

3953
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3954
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3955
        last two dimensions and a batched matrix multiply supporting broadcast
3956
        applies on the two tensors.
G
guosheng 已提交
3957

Y
ying 已提交
3958 3959
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3960
    removed after matrix multiplication.
G
guosheng 已提交
3961 3962 3963

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3964 3965 3966
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3967
        alpha (float): The scale of output. Default 1.0.
3968
        name(str|None): A name for this layer(optional). If set None, the layer
3969
            will be named automatically.
G
guosheng 已提交
3970 3971

    Returns:
3972
        Variable: The product Tensor variable.
G
guosheng 已提交
3973

G
guosheng 已提交
3974 3975 3976
    Examples:
        .. code-block:: python

3977
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3978 3979
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3980

3981 3982
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3983

3984 3985
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3986

3987 3988
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3989 3990 3991 3992

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3993 3994
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3995

Y
ying 已提交
3996
            # x: [M], y: [N]
3997
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3998
    """
Y
ying 已提交
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4011
            y_shape = y_shape + [1]
Y
ying 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4028
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4029
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4030
    helper.append_op(
4031 4032 4033 4034
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4035 4036 4037
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4038
            'alpha': float(alpha),
S
sneaxiy 已提交
4039
        })
4040
    return out
4041 4042


4043
def topk(input, k, name=None):
Q
qingqing01 已提交
4044 4045 4046 4047
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4048
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4049 4050 4051 4052 4053 4054
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4076 4077 4078
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4079
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4080
                 of input.
4081
        name(str|None): A name for this layer(optional). If set None, the layer
4082
                       will be named automatically.
F
fengjiayi 已提交
4083
                       Default: None
Q
qingqing01 已提交
4084 4085

    Returns:
4086 4087 4088
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4089
        within the last dimension of input.
Q
qingqing01 已提交
4090

F
fengjiayi 已提交
4091 4092
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4093 4094 4095 4096 4097 4098 4099

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4100 4101
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4113
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4114
    """
Y
ying 已提交
4115 4116 4117 4118 4119 4120 4121 4122 4123
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4124

Y
ying 已提交
4125
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4126

4127
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4128 4129
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4130
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4131

4132
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4133 4134
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4135

4136 4137 4138
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4139
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4140
                          the length of reference string.
4141
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4142
                                     calculating edit distance.
4143
        name (str): The name of this layer. It is optional.
4144

W
wanghaoshuang 已提交
4145
    Returns:
W
wanghaoshuang 已提交
4146
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4147 4148 4149 4150

    Examples:
        .. code-block:: python

T
tink2123 已提交
4151 4152
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4153
            cost = fluid.layers.edit_distance(input=x,label=y)
4154
    """
4155
    helper = LayerHelper("edit_distance", **locals())
4156

4157
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4158
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4159 4160
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4161 4162 4163 4164 4165

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4166
            attrs={"tokens": ignored_tokens})
4167 4168 4169 4170 4171
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4172
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4173
            attrs={"tokens": ignored_tokens})
4174 4175
        label = erased_label

4176
    # edit distance op
X
Xin Pan 已提交
4177 4178
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4179 4180 4181 4182
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4183 4184
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4185 4186
        attrs={"normalized": normalized})

4187
    return edit_distance_out, sequence_num
4188 4189 4190 4191 4192


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4193

Y
ying 已提交
4194 4195 4196 4197
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4215
        input.lod = [[4, 4]]
4216 4217 4218 4219 4220 4221 4222

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4223
        output.lod = [[2, 1]]
4224 4225 4226

    Args:

Y
ying 已提交
4227 4228 4229 4230 4231 4232 4233 4234 4235
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4236
        name (str): The name of this layer. It is optional.
4237 4238

    Returns:
4239
        Variable: CTC greedy decode result. If all the sequences in result were
4240
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4241 4242 4243 4244 4245

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4246

4247
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4248
    """
4249
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4250
    _, topk_indices = topk(input, k=1)
4251 4252

    # ctc align op
X
Xin Pan 已提交
4253
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4254 4255 4256
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4257
        outputs={"Output": [ctc_out]},
4258 4259
        attrs={"merge_repeated": True,
               "blank": blank})
4260
    return ctc_out
4261 4262


W
Wu Yi 已提交
4263
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4264
    """
4265 4266
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4267
    to compute Connectionist Temporal Classification (CTC) loss.
4268 4269
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4270 4271 4272
    input tensor.

    Args:
4273
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4274 4275 4276 4277
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4278
       label (Variable): The ground truth of variable-length sequence,
4279 4280 4281
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4282 4283
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4284 4285 4286
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4287
         follewed by a mean_op.
W
Wu Yi 已提交
4288
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4289 4290

    Returns:
4291 4292
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4293 4294

    Examples:
4295

W
wanghaoshuang 已提交
4296
        .. code-block:: python
4297

4298 4299 4300
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4301 4302

    """
F
fengjiayi 已提交
4303
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4304 4305
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4306 4307 4308 4309 4310 4311
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4312 4313 4314 4315 4316
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4317
    return loss_out
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4333 4334 4335
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4336 4337 4338 4339 4340
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4341

4342
            out.lod  = [[0, 1, 3]]
4343 4344 4345 4346

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4347 4348 4349 4350 4351 4352 4353
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4354 4355 4356

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4357 4358

    Returns:
4359

4360 4361 4362 4363 4364
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4365
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4366
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4367 4368
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4369
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4370 4371 4372 4373 4374 4375
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4376 4377


4378 4379 4380 4381
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4382 4383 4384 4385 4386 4387
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4388
        num_neg_samples=None,
4389 4390 4391 4392
        name=None,
        sampler="uniform",
        custom_dist=None,
        seed=0):
4393 4394 4395 4396 4397 4398 4399
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4400 4401
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4402
            sample is 1.0.
C
chengduo 已提交
4403 4404 4405 4406 4407 4408 4409 4410 4411
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4412
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4413 4414
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4415 4416 4417
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4418
        custom_dist (Variable): A tensor with shape [num_total_classes].
4419 4420 4421 4422
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
F
fengjiayi 已提交
4423

4424
    Returns:
Y
Yibing Liu 已提交
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4452 4453 4454 4455 4456 4457 4458 4459 4460

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4461

4462
    """
Y
Yang Yu 已提交
4463 4464 4465
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4466 4467

    dim = input.shape[1]
Y
Yang Yu 已提交
4468 4469 4470 4471 4472 4473
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4487 4488 4489
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4490

Y
Yang Yu 已提交
4491 4492 4493 4494 4495
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'Bias': b,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
        assert isinstance(custom_dist, Variable)
        inputs['CustomDistribution'] = custom_dist
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

Y
Yang Yu 已提交
4516 4517
    attrs = {
        'num_total_classes': int(num_total_classes),
4518 4519 4520
        'num_neg_samples': num_neg_samples,
        'seed': seed,
        'sampler': sampler
Y
Yang Yu 已提交
4521
    }
Y
Yang Yu 已提交
4522 4523 4524

    helper.append_op(
        type='nce',
C
chengduo 已提交
4525
        inputs=inputs,
Y
Yang Yu 已提交
4526 4527 4528 4529 4530 4531
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4532
    return cost / (num_neg_samples + 1)
4533 4534


C
chengduo 已提交
4535 4536
def hsigmoid(input,
             label,
J
JiabinYang 已提交
4537 4538 4539
             num_classes=None,
             non_leaf_num=None,
             ptable=None,
4540
             pcode=None,
C
chengduo 已提交
4541 4542
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4543
             name=None,
J
JiabinYang 已提交
4544 4545
             is_costum=False,
             is_sparse=False):
W
weixing02 已提交
4546 4547
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4548
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4549 4550 4551 4552 4553 4554 4555 4556 4557
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4558

W
weixing02 已提交
4559
    Args:
M
minqiyang 已提交
4560
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4561 4562 4563 4564
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
J
JiabinYang 已提交
4565 4566
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set
        non_leaf_num: this defines the number of non-leaf nodes in costumed tree
4567 4568 4569 4570 4571 4572
        ptable: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            ptable should have the same shape with pcode, and for each sample i ptable[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        pcode:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
C
chengduo 已提交
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
J
JiabinYang 已提交
4584 4585
        is_costum: (bool|False)using user defined binary tree instead of default complete binary tree
        is_sparse: (bool|False)using sparse update instead of dense update
W
weixing02 已提交
4586 4587

    Returns:
J
JiabinYang 已提交
4588
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4589 4590 4591 4592 4593

    Examples:

        .. code-block:: python

G
guosheng 已提交
4594 4595 4596
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4597 4598 4599 4600
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4601 4602
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4603
    dim = input.shape[1]
J
JiabinYang 已提交
4604
    if ((num_classes is None) or (num_classes < 2)) and (not is_costum):
J
JiabinYang 已提交
4605 4606 4607 4608 4609 4610 4611 4612 4613
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

    if (is_costum) and (pcode is None):
        raise ValueError("pcode should not be None with costum tree")
    elif (is_costum) and (ptable is None):
        raise ValueError("ptable should not be None with costum tree")
    elif (is_costum) and (non_leaf_num is None):
        raise ValueError("non_leaf_num should not be None with costum tree")
4614 4615 4616
    else:
        pass

J
JiabinYang 已提交
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
    weights = None

    if not is_costum:
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[non_leaf_num, dim],
            is_bias=False,
            dtype=input.dtype)
4631 4632 4633 4634 4635 4636 4637
    inputs = {
        "X": input,
        "W": weights,
        "PTable": ptable,
        "PCode": pcode,
        "Label": label
    }
W
weixing02 已提交
4638
    if helper.bias_attr:
J
JiabinYang 已提交
4639 4640 4641
        if not is_costum:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4642
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4643 4644 4645 4646 4647 4648
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4649
                shape=[non_leaf_num, 1],
J
JiabinYang 已提交
4650 4651 4652
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4653 4654
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4655
        inputs=inputs,
W
weixing02 已提交
4656 4657
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4658 4659
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4660 4661 4662
    return out


Y
fix ci.  
ying 已提交
4663
def transpose(x, perm, name=None):
Y
ying 已提交
4664 4665 4666 4667 4668 4669 4670
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4671 4672 4673
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4674 4675 4676 4677 4678 4679 4680

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4681
            # use append_batch_size=False to avoid prepending extra
4682
            # batch size in shape
4683
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4684
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4685
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4686 4687
    """

Y
fix ci.  
ying 已提交
4688
    if len(perm) != len(x.shape):
Y
ying 已提交
4689 4690 4691
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4692 4693 4694 4695 4696 4697
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4698 4699

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4700 4701
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4702
    helper.append_op(
4703
        type='transpose2',
Y
fix ci.  
ying 已提交
4704
        inputs={'X': [x]},
4705 4706
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4707 4708
        attrs={'axis': perm})
    return out
4709 4710


4711 4712 4713 4714 4715 4716 4717
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4718
    """
4719 4720 4721 4722 4723 4724 4725
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4754 4755 4756 4757 4758 4759 4760 4761 4762
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4763 4764 4765
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4766 4767 4768 4769 4770
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4798 4799 4800
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4813
            output.dims = {8, 8}
4814

4815
            output.lod = [[4, 4]]
4816

D
dzhwinter 已提交
4817
     Examples:
4818 4819 4820

        .. code-block:: python

4821 4822
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4823 4824

    """
W
wanghaoshuang 已提交
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4835 4836 4837 4838 4839 4840 4841
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4842
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4843
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4844
    helper.append_op(
4845
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4846
    return out
4847 4848


Y
yuyang18 已提交
4849
@templatedoc()
4850
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4851 4852
    """
    ${comment}
4853 4854

    Args:
Y
yuyang18 已提交
4855
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4856 4857
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4858 4859 4860 4861 4862
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4863
        ${out_comment}.
4864 4865

    Examples:
Y
yuyang18 已提交
4866 4867 4868 4869
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4870 4871 4872 4873 4874 4875
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4876
    out = helper.create_variable_for_type_inference(dtype)
4877 4878 4879 4880 4881
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4882
    return helper.append_activation(out)
4883 4884


Y
yuyang18 已提交
4885
@templatedoc()
4886 4887
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4888 4889 4890 4891 4892 4893 4894
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4895 4896

    Args:
Y
yuyang18 已提交
4897 4898
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4899 4900

    Returns:
Y
yuyang18 已提交
4901
        ${out_comment}.
4902 4903
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4904 4905 4906 4907 4908

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4909
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4910 4911 4912 4913 4914 4915
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4916 4917


4918 4919 4920
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
4921
                               ignore_index=-100,
4922 4923
                               numeric_stable_mode=False,
                               return_softmax=False):
4924 4925
    """
    **Softmax With Cross Entropy Operator.**
4926

4927 4928 4929 4930
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4931

4932 4933 4934
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4935

4936 4937 4938
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4939

4940
    The equation is as follows:
4941

4942
    1) Hard label (one-hot label, so every sample has exactly one class)
4943

4944 4945 4946 4947
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4948

4949 4950 4951
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4952

4953 4954 4955 4956
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
4957 4958 4959
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
4960

S
sneaxiy 已提交
4961 4962 4963 4964 4965 4966 4967 4968
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

4969 4970 4971 4972 4973 4974 4975 4976
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4977 4978
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4979
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
4980 4981 4982
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
4983 4984 4985
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
4986
                                    stable algorithm. Default: False
4987
        return_softmax (bool): A flag indicating whether to return the softmax
4988
                               along with the cross entropy loss. Default: False
4989

4990
    Returns:
4991 4992 4993 4994
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
4995
                              2-D tensor with shape [N x K].
4996 4997 4998 4999 5000 5001 5002

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5003 5004
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5005 5006
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5007 5008
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5009 5010 5011 5012 5013 5014
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5015 5016 5017 5018 5019
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5020 5021 5022 5023

    if return_softmax:
        return loss, softmax

5024 5025 5026 5027 5028
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5029 5030
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5031
    For each instance, it computes the smooth L1 loss element by element first
5032
    and then sums all the losses. So the shape of ouput Variable is
5033
    [batch_size, 1].
5034

5035 5036
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5037
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5038
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5039
            L1 loss op with same shape as :attr:`x`.
5040
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5041 5042
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5043
            by this tensor element by element.
5044
        outside_weight (Variable|None): A tensor with rank at least 2. This
5045 5046
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5047
            element by element.
5048
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5049 5050
           scalar with default value 1.0.

5051
    Returns:
5052
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5053 5054 5055 5056 5057

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5058 5059
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5060
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5061
            out = fluid.layers.smooth_l1(x=fc, y=label)
5062
    """
5063

5064
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5065 5066
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5079 5080 5081 5082


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5083
    This layer creates the one-hot representations for input indices.
5084 5085

    Args:
Y
Yibing Liu 已提交
5086 5087
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5088 5089

    Returns:
Y
Yibing Liu 已提交
5090
        Variable: The one-hot representations of input.
5091 5092

    Examples:
C
caoying03 已提交
5093
        .. code-block:: python
5094

Y
Yibing Liu 已提交
5095 5096
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5097 5098
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5099
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5100 5101 5102 5103 5104 5105
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5106 5107


Y
Yu Yang 已提交
5108
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5109
    """
Y
yi.wu 已提交
5110 5111 5112
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5113 5114 5115 5116 5117 5118

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5119 5120
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5121 5122 5123 5124 5125 5126

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5127 5128
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5129 5130
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5131 5132 5133 5134 5135
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5136
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5137
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5138 5139
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5140 5141
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5142 5143 5144
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5145 5146


5147
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5148
    """
C
caoying03 已提交
5149 5150
    Gives a new shape to the input Tensor without changing its data.

5151 5152 5153 5154 5155
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5156

5157
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5158

5159 5160 5161 5162
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5163
    2. 0 means the actual dimension value is going to be copied from the
5164 5165 5166 5167
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5168 5169

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5170
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5171
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5172

5173
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5174 5175
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5176 5177
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5178
    dimensions.
C
caoying03 已提交
5179

5180
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5181 5182 5183 5184
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5185 5186

    Args:
5187
        x(variable): The input tensor.
C
caoying03 已提交
5188 5189
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5190 5191 5192 5193 5194
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5195 5196
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5197 5198 5199 5200 5201 5202 5203
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5204
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5205

5206
    Returns:
G
guosheng 已提交
5207 5208 5209 5210
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5211

X
Xin Pan 已提交
5212 5213 5214
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5215 5216
    Examples:
        .. code-block:: python
G
guosheng 已提交
5217

5218
            data = fluid.layers.data(
5219
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5220
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5221
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5222 5223 5224
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5225
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5226 5227 5228 5229 5230
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5231

5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5247
    helper = LayerHelper("reshape2", **locals())
5248 5249
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5250
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5251
    helper.append_op(
5252
        type="reshape2",
X
Xin Pan 已提交
5253
        inputs=inputs,
D
dzhwinter 已提交
5254
        attrs={"shape": shape},
5255 5256
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5257

D
dzhwinter 已提交
5258
    return helper.append_activation(out)
5259

5260

5261
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5262
    """
M
minqiyang 已提交
5263 5264 5265
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5266
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5267

Y
Yibing Liu 已提交
5268 5269
    Examples:
    Case 1:
M
minqiyang 已提交
5270
      Given
Y
Yibing Liu 已提交
5271 5272 5273 5274 5275 5276 5277 5278
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5279
        and
Y
Yibing Liu 已提交
5280 5281 5282
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5283

Y
Yibing Liu 已提交
5284
    Args:
5285
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5286
        axes (list): List of integers, indicating the dimensions to be squeezed.
5287
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5288 5289 5290 5291 5292 5293 5294 5295

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5296
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5297 5298
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5299 5300
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5301
    helper.append_op(
5302
        type="squeeze2",
5303
        inputs={"X": input},
Y
Yibing Liu 已提交
5304
        attrs={"axes": axes},
5305 5306
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5307

5308 5309 5310
    return out


5311
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5312
    """
M
minqiyang 已提交
5313 5314 5315
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5316

M
minqiyang 已提交
5317 5318
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5319
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5320

Y
Yibing Liu 已提交
5321
    Args:
5322
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5323
        axes (list): List of integers, indicating the dimensions to be inserted.
5324
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5325 5326 5327 5328 5329 5330 5331 5332

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5333
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5334 5335
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5336 5337
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5338
    helper.append_op(
5339
        type="unsqueeze2",
5340
        inputs={"X": input},
Y
Yibing Liu 已提交
5341
        attrs={"axes": axes},
5342 5343
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5344

5345 5346
    return out

5347

Y
yangyaming 已提交
5348
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5349
    """
Y
Yibing Liu 已提交
5350
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5351 5352 5353 5354
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5355
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5356 5357 5358 5359 5360 5361

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5362
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5363 5364 5365
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5366
            target_lod: [4, 2]
Y
yangyaming 已提交
5367 5368

            then we get a 1-level LoDTensor:
5369
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5370 5371 5372 5373 5374 5375
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5376
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5377 5378 5379 5380
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5381
                y.data = [[2, 4]]
Y
yangyaming 已提交
5382 5383 5384
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5385
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5386 5387 5388 5389 5390 5391
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5392
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5393 5394 5395 5396
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5397
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5398 5399 5400 5401
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5402
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5403 5404 5405 5406 5407
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5408
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5409
                           from :attr:`y`.
Y
yangyaming 已提交
5410
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5411
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5412 5413

    Returns:
Y
Yibing Liu 已提交
5414
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5415 5416

    Raises:
Y
Yibing Liu 已提交
5417
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5418 5419 5420 5421 5422 5423 5424 5425 5426

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5427
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5453
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5482 5483
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5496 5497 5498
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5512 5513 5514 5515


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5516
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5517
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5518

G
guosheng 已提交
5519 5520 5521 5522
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5545
                         The length of :attr:paddings must be
G
guosheng 已提交
5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5556

G
guosheng 已提交
5557 5558 5559 5560 5561 5562
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5563
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5564 5565 5566 5567 5568 5569 5570
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5571 5572


C
chengduo 已提交
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5643
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5644 5645 5646 5647 5648 5649 5650 5651 5652
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5653 5654 5655 5656 5657 5658 5659
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5660 5661
    called label-smoothing regularization (LSR).

5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5685
                              be :math:`(1, class\_num)`.
5686 5687
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5688
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5708
    smooth_label = helper.create_variable_for_type_inference(dtype)
5709 5710 5711 5712 5713 5714 5715
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5716 5717


W
wopeizl 已提交
5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5754 5755


J
jerrywgz 已提交
5756 5757 5758 5759 5760 5761
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5762 5763
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5780 5781 5782
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5783 5784 5785 5786 5787 5788
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5789
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5830 5831
        .. code-block:: python

W
whs 已提交
5832 5833 5834 5835
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5836
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5837 5838 5839 5840 5841 5842
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5843 5844


5845 5846 5847 5848
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5849 5850
                 resample='BILINEAR',
                 actual_shape=None):
5851
    """
Q
qiaolongfei 已提交
5852
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5853

5854
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5855 5856 5857
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5858

5859
        'BILINEAR' : Bilinear interpolation
5860
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5861

5862
    Args:
5863
        input (Variable): The input tensor of image resize layer,
5864 5865
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5866
        out_shape(list|tuple|Variable|None): Output shape of image resize
5867 5868
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5869
        scale(float|None): The multiplier for the input height or width.
5870 5871 5872
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5873 5874
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5875
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
5876
                       currently.
5877
                       Default: 'BILINEAR'
5878 5879 5880
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5881
                                :attr:`out_shape` and :attr:`scale` specifying
5882 5883 5884 5885 5886 5887 5888
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
5889 5890
                                constructing stage.
                                Default: None
5891 5892

    Returns:
Q
update  
qiaolongfei 已提交
5893 5894
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5895

5896 5897 5898
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
5899
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
5900 5901 5902 5903
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

5904 5905 5906
    Examples:
        .. code-block:: python

5907
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
5908
    """
5909 5910 5911 5912
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
5913 5914
    if resample not in resample_methods:
        raise ValueError(
5915
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
5916
        )
5917
    if out_shape is None and scale is None:
5918
        raise ValueError("One of out_shape and scale must not be None.")
5919
    helper = LayerHelper('interpolate', **locals())
5920
    dtype = helper.input_dtype()
5921 5922 5923 5924

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5925 5926 5927
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5928
    if out_shape is not None:
5929 5930 5931 5932
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
5933
            inputs['OutSize'] = out_shape
5934 5935 5936 5937 5938 5939 5940 5941
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
5942 5943 5944 5945
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5946 5947 5948 5949 5950
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
5951
    out = helper.create_variable_for_type_inference(dtype)
5952
    helper.append_op(
5953
        type='interpolate',
5954
        inputs=inputs,
5955
        outputs={"Out": out},
5956 5957 5958 5959 5960
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_methods[resample]
        })
5961
    return out
F
stash  
fengjiayi 已提交
5962 5963


5964
@templatedoc(op_type="interpolate")
5965 5966 5967 5968 5969
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
5970
    """
5971 5972
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
5973 5974
    in priority order.

5975 5976 5977 5978
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
5979 5980
    again in the other direction.

5981
    For details of bilinear interpolation, please refer to Wikipedia:
5982
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
5983 5984 5985 5986 5987

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5988

Y
yuyang18 已提交
5989 5990 5991 5992 5993
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5994 5995 5996
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5997
                                :attr:`out_shape` and :attr:`scale` specifying
5998 5999 6000 6001 6002 6003 6004
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6005 6006
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6007 6008 6009

    Returns:
        ${out_comment}.
6010 6011 6012 6013 6014

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6015 6016
    """

6017
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6018 6019


6020
@templatedoc(op_type="interpolate")
6021 6022 6023 6024 6025
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6026
    """
6027
    Resize input by performing nearest neighbor interpolation in both the
6028 6029
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6030 6031
    out_shape and scale in priority order.

6032
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6033
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6034 6035 6036 6037 6038

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6039

Y
yuyang18 已提交
6040 6041 6042 6043 6044
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6045 6046 6047
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6048
                                :attr:`out_shape` and :attr:`scale` specifying
6049 6050 6051 6052 6053 6054 6055
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6056 6057
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6058 6059 6060

    Returns:
        ${out_comment}.
6061 6062 6063 6064 6065

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6066 6067
    """

6068
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6069 6070 6071 6072


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6073 6074 6075
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6076 6077 6078 6079 6080 6081 6082
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6083
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6084

6085
    Returns:
Q
update  
qiaolongfei 已提交
6086
        Variable: The output is a 4-D tensor of the shape
6087
        (num_batches, channls, out_h, out_w).
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6098 6099 6100
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6101 6102 6103
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6104 6105
def gather(input, index):
    """
Q
qiaolongfei 已提交
6106 6107
    **Gather Layer**

6108
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6109 6110 6111 6112
    of X indexed by `index` and concatenate them together.

    .. math::

6113
        Out = X[Index]
W
whs 已提交
6114 6115 6116 6117 6118 6119 6120


    .. code-block:: text


                Given:

6121 6122
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6133
        input (Variable): The source input with rank>=1.
W
whs 已提交
6134 6135 6136 6137 6138 6139
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6140

W
whs 已提交
6141 6142 6143 6144 6145 6146
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6147
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6148 6149 6150 6151 6152 6153 6154 6155
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6187
    out = helper.create_variable_for_type_inference(dtype)
6188 6189 6190 6191 6192 6193 6194 6195 6196
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6247
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6248 6249 6250 6251 6252 6253 6254 6255 6256
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6270

6271 6272 6273
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6274
    """
F
stash  
fengjiayi 已提交
6275
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6276
    dtype = x.dtype
X
Xin Pan 已提交
6277
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6278
    if seed is None:
6279
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6280
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6281
    if isinstance(seed, int):
F
fengjiayi 已提交
6282 6283 6284 6285 6286
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6287 6288 6289 6290
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6291
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6292 6293
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6294 6295
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6296
    return out
W
whs 已提交
6297 6298


6299
def log(x, name=None):
W
wanghaoshuang 已提交
6300 6301 6302 6303 6304
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6305
        Out = \\ln(x)
W
wanghaoshuang 已提交
6306 6307

    Args:
6308
        x (Variable): Input tensor.
6309 6310
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6311 6312 6313 6314 6315 6316 6317 6318

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6319
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6320 6321
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6322
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6323
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6324
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6325 6326 6327
    return out


6328
def relu(x, name=None):
W
wanghaoshuang 已提交
6329 6330
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6331
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6332 6333 6334 6335
    the tensor elementwise.

    .. math::

6336
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6337 6338

    Args:
6339
        x (Variable): The input tensor.
6340 6341
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6342 6343 6344 6345 6346 6347 6348 6349

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6350
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6351 6352
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6353
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6354
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6355
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6356
    return out
6357 6358


C
chengduo 已提交
6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6400 6401 6402
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6403 6404 6405 6406
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6407
    .. math::
6408 6409

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6410

6411
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6412 6413 6414 6415 6416
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6417
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6418
                           Its shape should be the same as input.
6419
        num_classes (int): The possible number of labels.
W
whs 已提交
6420 6421 6422 6423

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6424
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6425 6426 6427 6428

    Examples:

        .. code-block:: python
6429

W
whs 已提交
6430 6431 6432 6433
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6434 6435 6436
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6437 6438
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6439 6440
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6441
        outputs={
W
whs 已提交
6442 6443 6444
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6445 6446 6447
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6522
                    isinstance(shape, Variable)):
6523 6524 6525 6526 6527
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6528
    out = helper.create_variable_for_type_inference(x.dtype)
6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6546 6547


W
whs 已提交
6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6565

W
whs 已提交
6566
              out_shape = [2, 3, 5, 5]
6567

W
whs 已提交
6568
          Step 1:
6569

W
whs 已提交
6570 6571 6572
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6573

W
whs 已提交
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6666 6667 6668 6669 6670 6671 6672 6673
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6674

6675 6676
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6677

6678 6679 6680 6681
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6682

6683 6684 6685 6686 6687
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6688 6689 6690

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6726
    out = helper.create_variable_for_type_inference("float32")
6727 6728 6729 6730 6731 6732 6733 6734

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6735 6736


M
minqiyang 已提交
6737 6738
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6739
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6740
    which compares left score and right score passed in.
M
minqiyang 已提交
6741
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6742 6743 6744 6745 6746 6747

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6748
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6749 6750
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6751
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6752 6753 6754
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6755
       Variable: The ranking loss.
M
minqiyang 已提交
6756
    Raises:
M
minqiyang 已提交
6757
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6758 6759 6760 6761 6762 6763 6764
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6765
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6766 6767 6768 6769 6770 6771
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6772 6773
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6799

W
whs 已提交
6800 6801
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6802

W
whs 已提交
6803
      Case 0:
M
minqiyang 已提交
6804

W
whs 已提交
6805 6806 6807
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6808

W
whs 已提交
6809 6810 6811
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6812

W
whs 已提交
6813
      Case 1:
M
minqiyang 已提交
6814

W
whs 已提交
6815 6816
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6817

W
whs 已提交
6818 6819 6820
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6821

W
whs 已提交
6822
      Case 2:
M
minqiyang 已提交
6823

W
whs 已提交
6824 6825
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6826

W
whs 已提交
6827 6828 6829
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6830 6831


W
whs 已提交
6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6858
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6887
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6910
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6933
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6957
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6982
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7006
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7007 7008 7009 7010 7011 7012 7013 7014
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
7029
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
7030
                        will be named automatically.
J
jerrywgz 已提交
7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7053
        attr=helper.param_attr,
J
jerrywgz 已提交
7054 7055 7056 7057
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7058
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7059 7060 7061 7062 7063 7064 7065 7066 7067
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7068 7069 7070 7071 7072 7073 7074 7075 7076 7077
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7078
    Returns:
7079
        output(${out_type}): ${out_comment}
7080 7081 7082 7083 7084 7085 7086

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7087 7088
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7089
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7108
    Returns:
7109
        output(${out_type}): ${out_comment}
7110 7111 7112 7113 7114 7115 7116

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7117 7118
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7119
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7137
    Returns:
7138
        output(${out_type}): ${out_comment}
7139 7140 7141 7142 7143 7144 7145

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7146 7147
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7148
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7149 7150 7151 7152 7153 7154 7155 7156
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7170

7171 7172 7173 7174 7175 7176 7177 7178 7179 7180
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7181 7182
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7198
        ValueError: If axis is not in range [0, rank(x)].
7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7215 7216
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7217
    helper.append_op(
7218
        type='flatten2',
7219
        inputs={"X": x},
7220 7221
        outputs={'Out': out,
                 'XShape': x_shape},
7222 7223
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7224 7225


C
chenweihang 已提交
7226
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7227
    """
C
chenweihang 已提交
7228
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7229
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7230 7231
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7232

C
chenweihang 已提交
7233 7234 7235 7236
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7237
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7238 7239 7240 7241 7242 7243
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7244
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7245 7246 7247
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7248 7249 7250
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7262 7263
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7264 7265 7266 7267 7268 7269
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7270
    return out
7271

7272

S
sneaxiy 已提交
7273 7274 7275 7276 7277 7278 7279 7280 7281
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7282

S
sneaxiy 已提交
7283
    .. math::
7284

S
sneaxiy 已提交
7285 7286 7287
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7288
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7289 7290 7291 7292
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7293 7294 7295
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7296 7297
    Returns:
        Variable: The output sequence mask.
7298

S
sneaxiy 已提交
7299 7300
    """

Q
qingqing01 已提交
7301
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7302
    if name is None:
X
Xin Pan 已提交
7303
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7304
    else:
X
Xin Pan 已提交
7305
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7306

Q
qingqing01 已提交
7307 7308 7309
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7310 7311
        outputs={'Y': out},
        attrs={
7312
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7313 7314 7315
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7316 7317


X
Xin Pan 已提交
7318
def stack(x, axis=0):
S
sneaxiy 已提交
7319 7320 7321 7322
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7323 7324 7325 7326 7327 7328 7329

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7330
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7331
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7332 7333

    Args:
7334
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7335
        axis (int|None): The axis along which all inputs are stacked.
7336

S
sneaxiy 已提交
7337 7338
    Returns:
        Variable: The stacked variable.
7339

S
sneaxiy 已提交
7340 7341
    """

X
Xin Pan 已提交
7342 7343 7344 7345 7346 7347
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7348
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7349
    helper.append_op(
S
sneaxiy 已提交
7350 7351
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7352

X
Xin Pan 已提交
7353
    return out
D
dzhwinter 已提交
7354 7355 7356 7357 7358 7359 7360


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7361

D
dzhwinter 已提交
7362 7363 7364
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7365
    raised.
D
dzhwinter 已提交
7366 7367

    Args:
M
minqiyang 已提交
7368
        x (Variable): Input variable.
D
dzhwinter 已提交
7369 7370
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7371

D
dzhwinter 已提交
7372 7373
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7374

D
dzhwinter 已提交
7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7386
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7387 7388 7389 7390 7391 7392 7393 7394

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7407

W
whs 已提交
7408 7409 7410 7411
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7412

W
whs 已提交
7413
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7414

W
whs 已提交
7415
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7416

W
whs 已提交
7417 7418 7419 7420
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7421

W
whs 已提交
7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7438
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7439 7440 7441 7442 7443 7444
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7445 7446


G
fix  
gongweibao 已提交
7447 7448 7449
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7450
@templatedoc()
G
fix  
gongweibao 已提交
7451 7452 7453 7454 7455 7456 7457 7458 7459
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7460
    ${comment}
G
fix  
gongweibao 已提交
7461 7462

    Args:
G
gongweibao 已提交
7463 7464 7465
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7466
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7467 7468 7469
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7470 7471
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7472
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7473 7474 7475 7476

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7477
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7494 7495


G
gongweibao 已提交
7496
@templatedoc()
X
Xin Pan 已提交
7497
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7498
    """
G
gongweibao 已提交
7499
    ${comment}
G
fix  
gongweibao 已提交
7500 7501

    Args:
G
gongweibao 已提交
7502 7503 7504 7505
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7506 7507 7508
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7509
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7510 7511 7512 7513

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7514
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7515 7516 7517 7518 7519 7520 7521 7522 7523 7524
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7525
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7526 7527 7528 7529 7530
        })

    return out


G
gongweibao 已提交
7531
@templatedoc()
G
fix  
gongweibao 已提交
7532
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7533
    """
G
gongweibao 已提交
7534
    ${comment}
G
fix  
gongweibao 已提交
7535 7536

    Args:
G
gongweibao 已提交
7537 7538 7539 7540
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7541
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7542 7543

    Returns:
G
gongweibao 已提交
7544
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7545 7546 7547 7548

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7549
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7561
@templatedoc()
G
fix  
gongweibao 已提交
7562 7563 7564 7565 7566 7567 7568 7569 7570
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7571
    ${comment}
G
fix  
gongweibao 已提交
7572 7573

    Args:
G
gongweibao 已提交
7574 7575
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7576
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7577 7578 7579 7580
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7581
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7582 7583

    Returns:
G
gongweibao 已提交
7584
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7585 7586 7587
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7588
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7607
@templatedoc()
X
Xin Pan 已提交
7608
def sum(x):
G
fix  
gongweibao 已提交
7609
    """
G
gongweibao 已提交
7610
    ${comment}
G
fix  
gongweibao 已提交
7611 7612

    Args:
G
gongweibao 已提交
7613
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7614 7615

    Returns:
G
gongweibao 已提交
7616
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7617 7618 7619
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7620 7621
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7622 7623 7624 7625
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7626
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7627 7628 7629 7630

    return out


G
gongweibao 已提交
7631
@templatedoc()
G
fix  
gongweibao 已提交
7632 7633
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7634
    ${comment}
G
fix  
gongweibao 已提交
7635 7636

    Args:
G
gongweibao 已提交
7637 7638 7639 7640
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7641 7642

    Returns:
G
gongweibao 已提交
7643
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7644 7645 7646 7647

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7648 7649
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7661
@templatedoc()
G
fix  
gongweibao 已提交
7662 7663
def shape(input):
    """
G
gongweibao 已提交
7664
    ${comment}
G
fix  
gongweibao 已提交
7665 7666

    Args:
G
gongweibao 已提交
7667
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7668 7669

    Returns:
G
gongweibao 已提交
7670
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7671 7672 7673 7674

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7675 7676
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7677
    helper.append_op(
G
fix  
gongweibao 已提交
7678
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7679 7680

    return out
G
merge  
gongweibao 已提交
7681 7682


S
sneaxiy 已提交
7683 7684 7685 7686 7687 7688 7689 7690
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7691 7692
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7693
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7694 7695 7696
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7697

S
sneaxiy 已提交
7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7709
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7710 7711 7712 7713 7714 7715 7716 7717
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7718
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7719
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7720 7721 7722 7723 7724 7725

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7726
    if name is None:
X
Xin Pan 已提交
7727
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7728 7729 7730
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7731 7732 7733 7734 7735 7736 7737 7738 7739 7740

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7741
    return helper.append_activation(out)
S
sneaxiy 已提交
7742 7743


X
Xin Pan 已提交
7744
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7745 7746 7747
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7748
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7749 7750 7751
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7752
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7753 7754 7755
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7756
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7757 7758 7759
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7760
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7761 7762 7763
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7764
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7765 7766 7767
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7768
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7780 7781
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7782
        ])
M
minqiyang 已提交
7783 7784


7785
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7786 7787
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7788 7789
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7790 7791 7792

    if out is None:
        if name is None:
X
Xin Pan 已提交
7793
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7809
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7821 7822 7823 7824 7825 7826 7827 7828 7829

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
7830 7831 7832 7833 7834 7835 7836
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7837
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7849 7850 7851 7852 7853 7854 7855 7856 7857

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
7858 7859 7860 7861 7862 7863 7864
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7865
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7877 7878 7879 7880 7881 7882 7883 7884 7885

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
7886 7887 7888 7889 7890 7891 7892
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7893
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7894 7895 7896 7897 7898 7899 7900 7901 7902 7903
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7904 7905 7906 7907 7908 7909 7910

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
7911 7912 7913 7914
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7930 7931 7932 7933 7934 7935 7936

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
7937 7938 7939 7940 7941
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
7942 7943 7944 7945
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7969 7970 7971 7972 7973 7974 7975

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
7976 7977 7978 7979 7980
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
7981 7982 7983 7984
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7985 7986 7987 7988 7989 7990 7991 7992

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8011
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8041
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8042 8043 8044 8045 8046 8047 8048 8049 8050
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8051 8052
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8075
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8105
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8106 8107 8108 8109 8110 8111 8112 8113 8114 8115
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8116 8117


J
JiabinYang 已提交
8118
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8119
    """
J
JiabinYang 已提交
8120
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8121 8122 8123

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8124
    The attr blocksize indicates the input block size.
8125 8126

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8127
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8128 8129

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8130
    (but keeping all data)
J
JiabinYang 已提交
8131

J
JiabinYang 已提交
8132
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8133
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8134 8135 8136 8137 8138
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8139
    Args:
J
JiabinYang 已提交
8140
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8141
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8142 8143

    Returns:
J
JiabinYang 已提交
8144
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8145 8146

    Raises:
J
JiabinYang 已提交
8147
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8148 8149 8150 8151 8152 8153

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8154
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8155
                x=data, blocksize=2)
J
JiabinYang 已提交
8156 8157
    """

J
JiabinYang 已提交
8158
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8159

J
JiabinYang 已提交
8160 8161
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8162 8163

    if name is None:
J
JiabinYang 已提交
8164 8165
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8166 8167 8168 8169 8170
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8171
        type="space_to_depth",
J
JiabinYang 已提交
8172
        inputs={"X": x},
J
JiabinYang 已提交
8173
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8174
        outputs={"Out": out})
J
JiabinYang 已提交
8175 8176
    return out

J
JiabinYang 已提交
8177

S
sneaxiy 已提交
8178 8179
@templatedoc()
def sequence_reverse(x, name=None):
8180
    """
S
sneaxiy 已提交
8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8192
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8193 8194 8195 8196 8197 8198 8199 8200 8201 8202
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8203 8204


8205 8206 8207 8208 8209 8210
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8211

8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8231
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8244 8245


B
barrierye 已提交
8246
def similarity_focus(input, axis, indexes, name=None):
8247
    """
B
barrierye 已提交
8248
    SimilarityFocus Operator
B
barrierye 已提交
8249 8250

    Generate a similarity focus mask with the same shape of input using the following method:
8251 8252 8253
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8254
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8255 8256 8257 8258 8259 8260 8261
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8262
       each index.
B
barrierye 已提交
8263 8264 8265 8266
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8316
    Args:
8317
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8318
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8319
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8320
            1, 2 or 3.
B
barrierye 已提交
8321
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8322 8323

    Returns:
8324
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8325
            as the input.
8326

B
barrierye 已提交
8327 8328 8329
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8330 8331
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8344 8345 8346 8347 8348
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8349 8350 8351 8352 8353 8354 8355
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8356 8357


M
minqiyang 已提交
8358 8359
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8360 8361
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8362 8363
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8402
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8403
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8404 8405 8406 8407 8408 8409 8410 8411 8412

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8413 8414
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8415 8416
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8417 8418 8419 8420 8421 8422 8423
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8424 8425


D
dengkaipeng 已提交
8426
@templatedoc()
8427 8428
def grid_sampler(x, grid, name=None):
    """
8429
    This operation samples input X by using bilinear interpolation based on
8430
    flow field grid, which is usually gennerated by affine_grid. The grid of
8431 8432 8433 8434
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8435
    interpolation value of 4 nearest corner points.
8436 8437 8438 8439 8440 8441 8442 8443

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8444
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8474 8475

    Args:
8476 8477 8478
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8479 8480

    Returns:
8481
        out(Variable): Output of shape [N, C, H, W] data samples input X
8482 8483 8484 8485 8486 8487 8488 8489 8490
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8491 8492 8493 8494 8495 8496 8497 8498 8499
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8500
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8501 8502
    ipts = {'X': x, 'Grid': grid}

8503
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8504 8505 8506
    return out


G
gmcather 已提交
8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8601 8602 8603 8604 8605 8606 8607 8608 8609 8610


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8611
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8612

Q
Qiao Longfei 已提交
8613
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8614 8615 8616
    For example:

    .. math::
8617
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8618

Q
Qiao Longfei 已提交
8619
    In this formula:
8620 8621
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8622
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8623
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8624 8625 8626
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8627 8628
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8629 8630 8631
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8632
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8633
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8634
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8635 8636 8637 8638
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8639
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8640 8641 8642 8643

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8644
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8645 8646
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8647
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8648 8649 8650 8651

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8652
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)