# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from copy import deepcopy import paddle class ExponentialMovingAverage(): """ Exponential Moving Average Code was heavily based on https://github.com/rwightman/pytorch-image-models/blob/master/timm/utils/model_ema.py """ def __init__(self, model, decay=0.9999): super().__init__() # make a copy of the model for accumulating moving average of weights self.module = deepcopy(model) self.module.eval() self.decay = decay @paddle.no_grad() def _update(self, model, update_fn): for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()): ema_v.set_value(update_fn(ema_v, model_v)) def update(self, model): self._update(model, update_fn=lambda e, m: self.decay * e + (1. - self.decay) * m) def set(self, model): self._update(model, update_fn=lambda e, m: m)