# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import argparse import base64 import shutil import cv2 import numpy as np from paddle.inference import Config from paddle.inference import create_predictor class Predictor(object): def __init__(self, args, inference_model_dir=None): # HALF precission predict only work when using tensorrt if args.use_fp16 is True: assert args.use_tensorrt is True self.args = args if self.args.get("use_onnx", False): self.predictor, self.config = self.create_onnx_predictor( args, inference_model_dir) else: self.predictor, self.config = self.create_paddle_predictor( args, inference_model_dir) def predict(self, image): raise NotImplementedError def create_paddle_predictor(self, args, inference_model_dir=None): if inference_model_dir is None: inference_model_dir = args.inference_model_dir params_file = os.path.join(inference_model_dir, "inference.pdiparams") model_file = os.path.join(inference_model_dir, "inference.pdmodel") config = Config(model_file, params_file) if args.use_gpu: config.enable_use_gpu(args.gpu_mem, 0) else: config.disable_gpu() if args.enable_mkldnn: # cache 10 different shapes for mkldnn to avoid memory leak config.set_mkldnn_cache_capacity(10) config.enable_mkldnn() config.set_cpu_math_library_num_threads(args.cpu_num_threads) if args.enable_profile: config.enable_profile() config.disable_glog_info() config.switch_ir_optim(args.ir_optim) # default true if args.use_tensorrt: config.enable_tensorrt_engine( precision_mode=Config.Precision.Half if args.use_fp16 else Config.Precision.Float32, max_batch_size=args.batch_size, workspace_size=1 << 30, min_subgraph_size=30) config.enable_memory_optim() # use zero copy config.switch_use_feed_fetch_ops(False) predictor = create_predictor(config) return predictor, config def create_onnx_predictor(self, args, inference_model_dir=None): import onnxruntime as ort if inference_model_dir is None: inference_model_dir = args.inference_model_dir model_file = os.path.join(inference_model_dir, "inference.onnx") config = ort.SessionOptions() if args.use_gpu: raise ValueError( "onnx inference now only supports cpu! please specify use_gpu false." ) else: config.intra_op_num_threads = args.cpu_num_threads if args.ir_optim: config.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL predictor = ort.InferenceSession(model_file, sess_options=config) return predictor, config