# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from paddle_serving_app.reader import Sequential, URL2Image, Resize, CenterCrop, RGB2BGR, Transpose, Div, Normalize, Base64ToImage try: from paddle_serving_server_gpu.web_service import WebService, Op except ImportError: from paddle_serving_server.web_service import WebService, Op import logging import numpy as np import base64, cv2 class ImagenetOp(Op): def init_op(self): self.seq = Sequential([ Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)), Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True) ]) self.label_dict = {} label_idx = 0 with open("imagenet.label") as fin: for line in fin: self.label_dict[label_idx] = line.strip() label_idx += 1 def preprocess(self, input_dicts, data_id, log_id): (_, input_dict), = input_dicts.items() batch_size = len(input_dict.keys()) imgs = [] for key in input_dict.keys(): data = base64.b64decode(input_dict[key].encode('utf8')) data = np.fromstring(data, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) img = self.seq(im) imgs.append(img[np.newaxis, :].copy()) input_imgs = np.concatenate(imgs, axis=0) return {"inputs": input_imgs}, False, None, "" def postprocess(self, input_dicts, fetch_dict, log_id): score_list = fetch_dict["prediction"] result = {"label": [], "prob": []} for score in score_list: score = score.tolist() max_score = max(score) result["label"].append(self.label_dict[score.index(max_score)] .strip().replace(",", "")) result["prob"].append(max_score) result["label"] = str(result["label"]) result["prob"] = str(result["prob"]) return result, None, "" class ImageService(WebService): def get_pipeline_response(self, read_op): image_op = ImagenetOp(name="imagenet", input_ops=[read_op]) return image_op uci_service = ImageService(name="imagenet") uci_service.prepare_pipeline_config("config.yml") uci_service.run_service()