#!/bin/bash source test_tipc/common_func.sh # always use the lite_train_lite_infer mode to speed. Modify the config file. MODE=lite_train_lite_infer BASEDIR=$(dirname "$0") FILENAME=$1 sed -i 's/gpu_list.*$/gpu_list:0/g' $FILENAME sed -i '23,$d' $FILENAME #sed -i 's/-o Global.device:.*$/-o Global.device:cpu/g' $FILENAME sed -i '16s/$/ -o Global.print_batch_step=1/' ${FILENAME} # get the log path. IFS=$'\n' dataline=$(cat ${FILENAME}) lines=(${dataline}) model_name=$(func_parser_value "${lines[1]}") LOG_PATH="./test_tipc/output/${model_name}/${MODE}" rm -rf $LOG_PATH mkdir -p ${LOG_PATH} status_log="${LOG_PATH}/results_python.log" # make cudnn algorithm deterministic, such as conv. export FLAGS_cudnn_deterministic=True # start dygraph train dygraph_output=$LOG_PATH/python_train_infer_dygraph_output.txt dygraph_loss=$LOG_PATH/dygraph_loss.txt sed -i '15ctrainer:norm_train' ${FILENAME} cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} $MODE >$dygraph_output 2>&1" echo $cmd eval $cmd # start dy2static train dy2static_output=$LOG_PATH/python_train_infer_dy2static_output.txt dy2static_loss=$LOG_PATH/dy2static_loss.txt sed -i '15ctrainer:to_static_train' ${FILENAME} cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} $MODE >$dy2static_output 2>&1" echo $cmd eval $cmd # analysis and compare the losses. dyout=`cat $dy2static_output | python3 test_tipc/extract_loss.py -v 'Iter:' -e 'loss: {%f},'` stout=`cat $dygraph_output | python3 test_tipc/extract_loss.py -v 'Iter:' -e 'loss: {%f},' ` echo $dyout > $dygraph_loss echo $stout > $dy2static_loss diff_log=$LOG_PATH/diff_log.txt diff_cmd="diff -w $dygraph_loss $dy2static_loss | tee $diff_log" eval $diff_cmd last_status=$? if [ "$dyout" = "" ]; then status_check 2 $diff_cmd $status_log $model_name $diff_log fi if [ "$stout" = "" ]; then status_check 2 $diff_cmd $status_log $model_name $diff_log fi status_check $last_status $diff_cmd $status_log $model_name $diff_log