# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #This code is based on https://github.com/zhunzhong07/Random-Erasing import math import random import numpy as np class RandomErasing(object): def __init__(self, EPSILON=0.5, sl=0.02, sh=0.4, r1=0.3, mean=[0., 0., 0.]): self.EPSILON = EPSILON self.mean = mean self.sl = sl self.sh = sh self.r1 = r1 def __call__(self, img): if random.uniform(0, 1) > self.EPSILON: return img for _ in range(100): area = img.shape[0] * img.shape[1] target_area = random.uniform(self.sl, self.sh) * area aspect_ratio = random.uniform(self.r1, 1 / self.r1) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < img.shape[1] and h < img.shape[0]: x1 = random.randint(0, img.shape[0] - h) y1 = random.randint(0, img.shape[1] - w) if img.shape[0] == 3: img[x1:x1 + h, y1:y1 + w, 0] = self.mean[0] img[x1:x1 + h, y1:y1 + w, 1] = self.mean[1] img[x1:x1 + h, y1:y1 + w, 2] = self.mean[2] else: img[0, x1:x1 + h, y1:y1 + w] = self.mean[1] return img return img