# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import errno import os import re import shutil import tempfile import paddle from paddle.io import load_program_state from ppcls.utils import logger __all__ = ['init_model', 'save_model', 'load_dygraph_pretrain'] def _mkdir_if_not_exist(path): """ mkdir if not exists, ignore the exception when multiprocess mkdir together """ if not os.path.exists(path): try: os.makedirs(path) except OSError as e: if e.errno == errno.EEXIST and os.path.isdir(path): logger.warning( 'be happy if some process has already created {}'.format( path)) else: raise OSError('Failed to mkdir {}'.format(path)) def load_dygraph_pretrain(model, path=None, load_static_weights=False): if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')): raise ValueError("Model pretrain path {} does not " "exists.".format(path)) if load_static_weights: pre_state_dict = load_program_state(path) param_state_dict = {} model_dict = model.state_dict() for key in model_dict.keys(): weight_name = model_dict[key].name if weight_name in pre_state_dict.keys(): print('Load weight: {}, shape: {}'.format( weight_name, pre_state_dict[weight_name].shape)) param_state_dict[key] = pre_state_dict[weight_name] else: param_state_dict[key] = model_dict[key] model.set_dict(param_state_dict) return param_state_dict, optim_state_dict = paddle.load(path) model.set_dict(param_state_dict) return def load_distillation_model(model, pretrained_model, load_static_weights): logger.info("In distillation mode, teacher model will be " "loaded firstly before student model.") assert len(pretrained_model ) == 2, "pretrained_model length should be 2 but got {}".format( len(pretrained_model)) assert len( load_static_weights ) == 2, "load_static_weights length should be 2 but got {}".format( len(load_static_weights)) load_dygraph_pretrain( model.teacher, path=pretrained_model[0], load_static_weights=load_static_weights[0]) logger.info( logger.coloring("Finish initing teacher model from {}".format( pretrained_model), "HEADER")) load_dygraph_pretrain( model.student, path=pretrained_model[1], load_static_weights=load_static_weights[1]) logger.info( logger.coloring("Finish initing student model from {}".format( pretrained_model), "HEADER")) def init_model(config, net, optimizer=None): """ load model from checkpoint or pretrained_model """ checkpoints = config.get('checkpoints') if checkpoints: assert os.path.exists(checkpoints + ".pdparams"), \ "Given dir {}.pdparams not exist.".format(checkpoints) assert os.path.exists(checkpoints + ".pdopt"), \ "Given dir {}.pdopt not exist.".format(checkpoints) para_dict, opti_dict = paddle(checkpoints) net.set_dict(para_dict) optimizer.set_dict(opti_dict) logger.info( logger.coloring("Finish initing model from {}".format(checkpoints), "HEADER")) return pretrained_model = config.get('pretrained_model') load_static_weights = config.get('load_static_weights', False) use_distillation = config.get('use_distillation', False) if pretrained_model: if isinstance(pretrained_model, list): # load distillation pretrained model if not isinstance(load_static_weights, list): load_static_weights = [load_static_weights] * len( pretrained_model) load_distillation_model(net, pretrained_model, load_static_weights) else: # common load load_dygraph_pretrain( net, path=pretrained_model, load_static_weights=load_static_weights) logger.info( logger.coloring("Finish initing model from {}".format( pretrained_model), "HEADER")) def save_model(net, optimizer, model_path, epoch_id, prefix='ppcls'): """ save model to the target path """ model_path = os.path.join(model_path, str(epoch_id)) _mkdir_if_not_exist(model_path) model_prefix = os.path.join(model_path, prefix) paddle.save(net.state_dict(), model_prefix) paddle.save(optimizer.state_dict(), model_prefix) logger.info( logger.coloring("Already save model in {}".format(model_path), "HEADER"))