import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F from paddle.nn import Conv2d, BatchNorm, Linear, Dropout, ReLU from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d from paddle.nn.initializer import Uniform import math __all__ = ["AlexNet"] class ConvPoolLayer(nn.Layer): def __init__(self, input_channels, output_channels, filter_size, stride, padding, stdv, groups=1, act=None, name=None): super(ConvPoolLayer, self).__init__() self.relu = ReLU() if act == "relu" else None self._conv = Conv2d( in_channels=input_channels, out_channels=output_channels, kernel_size=filter_size, stride=stride, padding=padding, groups=groups, weight_attr=ParamAttr( name=name + "_weights", initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr( name=name + "_offset", initializer=Uniform(-stdv, stdv))) self._pool = MaxPool2d(kernel_size=3, stride=2, padding=0) def forward(self, inputs): x = self._conv(inputs) if self.relu is not None: x = self.relu(x) x = self._pool(x) return x class AlexNetDY(nn.Layer): def __init__(self, class_dim=1000): super(AlexNetDY, self).__init__() stdv = 1.0 / math.sqrt(3 * 11 * 11) self._conv1 = ConvPoolLayer( 3, 64, 11, 4, 2, stdv, act="relu", name="conv1") stdv = 1.0 / math.sqrt(64 * 5 * 5) self._conv2 = ConvPoolLayer( 64, 192, 5, 1, 2, stdv, act="relu", name="conv2") stdv = 1.0 / math.sqrt(192 * 3 * 3) self._conv3 = Conv2d( 192, 384, 3, stride=1, padding=1, weight_attr=ParamAttr( name="conv3_weights", initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr( name="conv3_offset", initializer=Uniform(-stdv, stdv))) stdv = 1.0 / math.sqrt(384 * 3 * 3) self._conv4 = Conv2d( 384, 256, 3, stride=1, padding=1, weight_attr=ParamAttr( name="conv4_weights", initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr( name="conv4_offset", initializer=Uniform(-stdv, stdv))) stdv = 1.0 / math.sqrt(256 * 3 * 3) self._conv5 = ConvPoolLayer( 256, 256, 3, 1, 1, stdv, act="relu", name="conv5") stdv = 1.0 / math.sqrt(256 * 6 * 6) self._drop1 = Dropout(p=0.5, mode="downscale_in_infer") self._fc6 = Linear( in_features=256 * 6 * 6, out_features=4096, weight_attr=ParamAttr( name="fc6_weights", initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr( name="fc6_offset", initializer=Uniform(-stdv, stdv))) self._drop2 = Dropout(p=0.5, mode="downscale_in_infer") self._fc7 = Linear( in_features=4096, out_features=4096, weight_attr=ParamAttr( name="fc7_weights", initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr( name="fc7_offset", initializer=Uniform(-stdv, stdv))) self._fc8 = Linear( in_features=4096, out_features=class_dim, weight_attr=ParamAttr( name="fc8_weights", initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr( name="fc8_offset", initializer=Uniform(-stdv, stdv))) def forward(self, inputs): x = self._conv1(inputs) x = self._conv2(x) x = self._conv3(x) x = F.relu(x) x = self._conv4(x) x = F.relu(x) x = self._conv5(x) x = paddle.flatten(x, start_axis=1, stop_axis=-1) x = self._drop1(x) x = self._fc6(x) x = F.relu(x) x = self._drop2(x) x = self._fc7(x) x = F.relu(x) x = self._fc8(x) return x def AlexNet(**args): model = AlexNetDY(**args) return model