mode: 'train' ARCHITECTURE: name: 'ResNet50_vd' params: lr_mult_list: [0.1, 0.1, 0.2, 0.2, 0.3] pretrained_model: "./pretrained/ResNet50_vd_ssld_pretrained" model_save_dir: "./output/" classes_num: 102 total_images: 1020 save_interval: 1 validate: True valid_interval: 1 epochs: 20 topk: 5 image_shape: [3, 224, 224] LEARNING_RATE: function: 'Cosine' params: lr: 0.00375 OPTIMIZER: function: 'Momentum' params: momentum: 0.9 regularizer: function: 'L2' factor: 0.000001 TRAIN: batch_size: 32 num_workers: 0 file_list: "./dataset/flowers102/train_list.txt" data_dir: "./dataset/flowers102/" shuffle_seed: 0 transforms: - DecodeImage: to_rgb: True to_np: False channel_first: False - RandCropImage: size: 224 - RandFlipImage: flip_code: 1 - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - ToCHWImage: VALID: batch_size: 20 num_workers: 0 file_list: "./dataset/flowers102/val_list.txt" data_dir: "./dataset/flowers102/" shuffle_seed: 0 transforms: - DecodeImage: to_rgb: True to_np: False channel_first: False - ResizeImage: resize_short: 256 - CropImage: size: 224 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - ToCHWImage: