# 模型服务化部署 - [简介](#简介) - [Serving安装](#Serving安装) - [图像分类服务部署](#图像分类服务部署) - [图像识别服务部署](#图像识别服务部署) - [FAQ](#FAQ) ## 1. 简介 [Paddle Serving](https://github.com/PaddlePaddle/Serving) 旨在帮助深度学习开发者轻松部署在线预测服务,支持一键部署工业级的服务能力、客户端和服务端之间高并发和高效通信、并支持多种编程语言开发客户端。 该部分以 HTTP 预测服务部署为例,介绍怎样在 PaddleClas 中使用 PaddleServing 部署模型服务。 ## 2. Serving安装 Serving 官网推荐使用 docker 安装并部署 Serving 环境。首先需要拉取 docker 环境并创建基于 Serving 的 docker。 ```shell nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:0.2.0-gpu nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:0.2.0-gpu nvidia-docker exec -it test bash ``` 进入 docker 后,需要安装 Serving 相关的 python 包。 ```shell pip install paddlepaddle-gpu pip install paddle-serving-client pip install paddle-serving-server-gpu pip install paddle-serving-app ``` * 如果安装速度太慢,可以通过 `-i https://pypi.tuna.tsinghua.edu.cn/simple` 更换源,加速安装过程。 * 如果希望部署 CPU 服务,可以安装 serving-server 的 cpu 版本,安装命令如下。 ```shell pip install paddle-serving-server ``` ## 3. 图像分类服务部署 ### 3.1 模型转换 使用PaddleServing做服务化部署时,需要将保存的inference模型转换为Serving模型。下面以经典的ResNet50_vd模型为例,介绍如何部署图像分类服务。 - 进入工作目录: ```shell cd deploy/paddleserving ``` - 下载ResNet50_vd的inference模型: ```shell # 下载并解压ResNet50_vd模型 wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar && tar xf ResNet50_vd_infer.tar ``` - 用paddle_serving_client把下载的inference模型转换成易于Server部署的模型格式: ``` # 转换ResNet50_vd模型 python3 -m paddle_serving_client.convert --dirname ./ResNet50_vd_infer/ \ --model_filename inference.pdmodel \ --params_filename inference.pdiparams \ --serving_server ./ResNet50_vd_serving/ \ --serving_client ./ResNet50_vd_client/ ``` ResNet50_vd推理模型转换完成后,会在当前文件夹多出`ResNet50_vd_serving` 和`ResNet50_vd_client`的文件夹,具备如下格式: ``` |- ResNet50_vd_client/ |- __model__ |- __params__ |- serving_server_conf.prototxt |- serving_server_conf.stream.prototxt |- ResNet50_vd_client |- serving_client_conf.prototxt |- serving_client_conf.stream.prototxt ``` 得到模型文件之后,需要修改serving_server_conf.prototxt中的alias名字: 将`feed_var`中的`alias_name`改为`image`, 将`fetch_var`中的`alias_name`改为`prediction` **备注**: Serving为了兼容不同模型的部署,提供了输入输出重命名的功能。这样,不同的模型在推理部署时,只需要修改配置文件的alias_name即可,无需修改代码即可完成推理部署。 修改后的serving_server_conf.prototxt如下所示: ``` feed_var { name: "inputs" alias_name: "image" is_lod_tensor: false feed_type: 1 shape: 3 shape: 224 shape: 224 } fetch_var { name: "save_infer_model/scale_0.tmp_1" alias_name: "prediction" is_lod_tensor: true fetch_type: 1 shape: -1 } ``` ### 3.2 服务部署和请求 paddleserving目录包含了启动pipeline服务和发送预测请求的代码,包括: ```shell __init__.py config.yml # 启动服务的配置文件 pipeline_http_client.py # http方式发送pipeline预测请求的脚本 pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本 classification_web_service.py # 启动pipeline服务端的脚本 ``` - 启动服务: ```shell # 启动服务,运行日志保存在log.txt python3 classification_web_service.py &>log.txt & ``` 成功启动服务后,log.txt中会打印类似如下日志 ![](../../../deploy/paddleserving/imgs/start_server.png) - 发送请求: ```shell # 发送服务请求 python3 pipeline_http_client.py ``` 成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为: ![](../../../deploy/paddleserving/imgs/results.png) ## 4.图像识别服务部署 使用PaddleServing做服务化部署时,需要将保存的inference模型转换为Serving模型。 下面以PP-ShiTu中的超轻量图像识别模型为例,介绍图像识别服务的部署。 ## 4.1 模型转换 - 下载通用检测inference模型和通用识别inference模型 ``` cd deploy # 下载并解压通用识别模型 wget -P models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar cd models tar -xf general_PPLCNet_x2_5_lite_v1.0_infer.tar # 下载并解压通用检测模型 wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar tar -xf picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar ``` - 转换识别inference模型为Serving模型: ``` # 转换识别模型 python3 -m paddle_serving_client.convert --dirname ./general_PPLCNet_x2_5_lite_v1.0_infer/ \ --model_filename inference.pdmodel \ --params_filename inference.pdiparams \ --serving_server ./general_PPLCNet_x2_5_lite_v1.0_serving/ \ --serving_client ./general_PPLCNet_x2_5_lite_v1.0_client/ ``` 识别推理模型转换完成后,会在当前文件夹多出`general_PPLCNet_x2_5_lite_v1.0_serving/` 和`general_PPLCNet_x2_5_lite_v1.0_serving/`的文件夹。修改`general_PPLCNet_x2_5_lite_v1.0_serving/`目录下的serving_server_conf.prototxt中的alias名字: 将`fetch_var`中的`alias_name`改为`features`。 修改后的serving_server_conf.prototxt内容如下: ``` feed_var { name: "x" alias_name: "x" is_lod_tensor: false feed_type: 1 shape: 3 shape: 224 shape: 224 } fetch_var { name: "save_infer_model/scale_0.tmp_1" alias_name: "features" is_lod_tensor: true fetch_type: 1 shape: -1 } ``` - 转换通用检测inference模型为Serving模型: ``` # 转换通用检测模型 python3 -m paddle_serving_client.convert --dirname ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer/ \ --model_filename inference.pdmodel \ --params_filename inference.pdiparams \ --serving_server ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/ \ --serving_client ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/ ``` 检测inference模型转换完成后,会在当前文件夹多出`picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/` 和`picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/`的文件夹。 **注意:** 此处不需要修改`picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/`目录下的serving_server_conf.prototxt中的alias名字。 - 下载并解压已经构建后的检索库index ``` cd ../ wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar && tar -xf drink_dataset_v1.0.tar ``` ## 4.2 服务部署和请求 **注意:** 识别服务涉及到多个模型,出于性能考虑采用PipeLine部署方式。Pipeline部署方式当前不支持windows平台。 - 进入到工作目录 ```shell cd ./deploy/paddleserving/recognition ``` paddleserving目录包含启动pipeline服务和发送预测请求的代码,包括: ``` __init__.py config.yml # 启动服务的配置文件 pipeline_http_client.py # http方式发送pipeline预测请求的脚本 pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本 recognition_web_service.py # 启动pipeline服务端的脚本 ``` - 启动服务: ``` # 启动服务,运行日志保存在log.txt python3 recognition_web_service.py &>log.txt & ``` 成功启动服务后,log.txt中会打印类似如下日志 ![](../../../deploy/paddleserving/imgs/start_server_shitu.png) - 发送请求: ``` python3 pipeline_http_client.py ``` 成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为: ![](../../../deploy/paddleserving/imgs/results_shitu.png) ## 5.FAQ **Q1**: 发送请求后没有结果返回或者提示输出解码报错 **A1**: 启动服务和发送请求时不要设置代理,可以在启动服务前和发送请求前关闭代理,关闭代理的命令是: ``` unset https_proxy unset http_proxy ``` 更多的服务部署类型,如 `RPC预测服务` 等,可以参考 Serving 的[github 官网](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imagenet)