# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This code is based on https://github.com/akuxcw/GridMask # reference: https://arxiv.org/abs/2001.04086. import numpy as np from PIL import Image import pdb # curr CURR_EPOCH = 0 # epoch for the prob to be the upper limit NUM_EPOCHS = 240 class GridMask(object): def __init__(self, d1=96, d2=224, rotate=1, ratio=0.5, mode=0, prob=1.): self.d1 = d1 self.d2 = d2 self.rotate = rotate self.ratio = ratio self.mode = mode self.st_prob = prob self.prob = prob self.last_prob = -1 def set_prob(self): global CURR_EPOCH global NUM_EPOCHS self.prob = self.st_prob * min(1, 1.0 * CURR_EPOCH / NUM_EPOCHS) def __call__(self, img): self.set_prob() if abs(self.last_prob - self.prob) > 1e-10: global CURR_EPOCH global NUM_EPOCHS print( "self.prob is updated, self.prob={}, CURR_EPOCH: {}, NUM_EPOCHS: {}". format(self.prob, CURR_EPOCH, NUM_EPOCHS)) self.last_prob = self.prob # print("CURR_EPOCH: {}, NUM_EPOCHS: {}, self.prob is set as: {}".format(CURR_EPOCH, NUM_EPOCHS, self.prob) ) if np.random.rand() > self.prob: return img _, h, w = img.shape hh = int(1.5 * h) ww = int(1.5 * w) d = np.random.randint(self.d1, self.d2) #d = self.d self.l = int(d * self.ratio + 0.5) mask = np.ones((hh, ww), np.float32) st_h = np.random.randint(d) st_w = np.random.randint(d) for i in range(-1, hh // d + 1): s = d * i + st_h t = s + self.l s = max(min(s, hh), 0) t = max(min(t, hh), 0) mask[s:t, :] *= 0 for i in range(-1, ww // d + 1): s = d * i + st_w t = s + self.l s = max(min(s, ww), 0) t = max(min(t, ww), 0) mask[:, s:t] *= 0 r = np.random.randint(self.rotate) mask = Image.fromarray(np.uint8(mask)) mask = mask.rotate(r) mask = np.asarray(mask) mask = mask[(hh - h) // 2:(hh - h) // 2 + h, (ww - w) // 2:(ww - w) // 2 + w] if self.mode == 1: mask = 1 - mask mask = np.expand_dims(mask, axis=0) img = (img * mask).astype(img.dtype) return img