# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import six import types import paddle from difflib import SequenceMatcher from . import backbone from typing import Any, Dict, Union def get_architectures(): """ get all of model architectures """ names = [] for k, v in backbone.__dict__.items(): if isinstance(v, (types.FunctionType, six.class_types)): names.append(k) return names def get_blacklist_model_in_static_mode(): from ppcls.arch.backbone import distilled_vision_transformer from ppcls.arch.backbone import vision_transformer blacklist = distilled_vision_transformer.__all__ + vision_transformer.__all__ return blacklist def similar_architectures(name='', names=[], thresh=0.1, topk=10): """ inferred similar architectures """ scores = [] for idx, n in enumerate(names): if n.startswith('__'): continue score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio() if score > thresh: scores.append((idx, score)) scores.sort(key=lambda x: x[1], reverse=True) similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]] return similar_names def get_param_attr_dict(ParamAttr_config: Union[None, bool, Dict[str, Dict]] ) -> Union[None, bool, paddle.ParamAttr]: """parse ParamAttr from an dict Args: ParamAttr_config (Union[None, bool, Dict[str, Dict]]): ParamAttr configure Returns: Union[None, bool, paddle.ParamAttr]: Generated ParamAttr """ if ParamAttr_config is None: return None if isinstance(ParamAttr_config, bool): return ParamAttr_config ParamAttr_dict = {} if 'initializer' in ParamAttr_config: initializer_cfg = ParamAttr_config.get('initializer') if 'name' in initializer_cfg: initializer_name = initializer_cfg.pop('name') ParamAttr_dict['initializer'] = getattr( paddle.nn.initializer, initializer_name)(**initializer_cfg) else: raise ValueError(f"'name' must specified in initializer_cfg") if 'learning_rate' in ParamAttr_config: # NOTE: only support an single value now learning_rate_value = ParamAttr_config.get('learning_rate') if isinstance(learning_rate_value, (int, float)): ParamAttr_dict['learning_rate'] = learning_rate_value else: raise ValueError( f"learning_rate_value must be float or int, but got {type(learning_rate_value)}" ) if 'regularizer' in ParamAttr_config: regularizer_cfg = ParamAttr_config.get('regularizer') if 'name' in regularizer_cfg: # L1Decay or L2Decay regularizer_name = regularizer_cfg.pop('name') ParamAttr_dict['regularizer'] = getattr( paddle.regularizer, regularizer_name)(**regularizer_cfg) else: raise ValueError(f"'name' must specified in regularizer_cfg") return paddle.ParamAttr(**ParamAttr_dict)