# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import time import paddle from ppcls.engine.train.utils import update_loss, update_metric, log_info, type_name from ppcls.utils import profiler def train_epoch(engine, epoch_id, print_batch_step): tic = time.time() if not hasattr(engine, "train_dataloader_iter"): engine.train_dataloader_iter = iter(engine.train_dataloader) for iter_id in range(engine.max_iter): # fetch data batch from dataloader try: batch = engine.train_dataloader_iter.next() except Exception: engine.train_dataloader_iter = iter(engine.train_dataloader) batch = engine.train_dataloader_iter.next() profiler.add_profiler_step(engine.config["profiler_options"]) if iter_id == 5: for key in engine.time_info: engine.time_info[key].reset() engine.time_info["reader_cost"].update(time.time() - tic) batch_size = batch[0].shape[0] if not engine.config["Global"].get("use_multilabel", False): batch[1] = batch[1].reshape([batch_size, -1]) engine.global_step += 1 # image input if engine.amp: amp_level = engine.config["AMP"].get("level", "O1").upper() with paddle.amp.auto_cast( custom_black_list={ "flatten_contiguous_range", "greater_than" }, level=amp_level): out = forward(engine, batch) loss_dict = engine.train_loss_func(out, batch[1]) else: out = forward(engine, batch) loss_dict = engine.train_loss_func(out, batch[1]) # loss loss = loss_dict["loss"] / engine.update_freq # backward & step opt if engine.amp: scaled = engine.scaler.scale(loss) scaled.backward() if (iter_id + 1) % engine.update_freq == 0: for i in range(len(engine.optimizer)): engine.scaler.minimize(engine.optimizer[i], scaled) else: loss.backward() if (iter_id + 1) % engine.update_freq == 0: for i in range(len(engine.optimizer)): engine.optimizer[i].step() if (iter_id + 1) % engine.update_freq == 0: # clear grad for i in range(len(engine.optimizer)): engine.optimizer[i].clear_grad() # step lr(by step) for i in range(len(engine.lr_sch)): if not getattr(engine.lr_sch[i], "by_epoch", False): engine.lr_sch[i].step() # update ema if engine.ema: engine.model_ema.update(engine.model) # below code just for logging # update metric_for_logger update_metric(engine, out, batch, batch_size) # update_loss_for_logger update_loss(engine, loss_dict, batch_size) engine.time_info["batch_cost"].update(time.time() - tic) if iter_id % print_batch_step == 0: log_info(engine, batch_size, epoch_id, iter_id) tic = time.time() # step lr(by epoch) for i in range(len(engine.lr_sch)): if getattr(engine.lr_sch[i], "by_epoch", False) and \ type_name(engine.lr_sch[i]) != "ReduceOnPlateau": engine.lr_sch[i].step() def forward(engine, batch): if not engine.is_rec: return engine.model(batch[0]) else: return engine.model(batch[0], batch[1])