# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import errno import os import re import shutil import tempfile import paddle from paddle.static import load_program_state from paddle.utils.download import get_weights_path_from_url from ppcls.utils import logger __all__ = ['init_model', 'save_model', 'load_dygraph_pretrain'] def _mkdir_if_not_exist(path): """ mkdir if not exists, ignore the exception when multiprocess mkdir together """ if not os.path.exists(path): try: os.makedirs(path) except OSError as e: if e.errno == errno.EEXIST and os.path.isdir(path): logger.warning( 'be happy if some process has already created {}'.format( path)) else: raise OSError('Failed to mkdir {}'.format(path)) def load_dygraph_pretrain(model, path=None, load_static_weights=False): if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')): raise ValueError("Model pretrain path {} does not " "exists.".format(path)) if load_static_weights: pre_state_dict = load_program_state(path) param_state_dict = {} model_dict = model.state_dict() for key in model_dict.keys(): weight_name = model_dict[key].name if weight_name in pre_state_dict.keys(): logger.info('Load weight: {}, shape: {}'.format( weight_name, pre_state_dict[weight_name].shape)) param_state_dict[key] = pre_state_dict[weight_name] else: param_state_dict[key] = model_dict[key] model.set_dict(param_state_dict) return param_state_dict = paddle.load(path + ".pdparams") model.set_dict(param_state_dict) return def load_dygraph_pretrain_from_url(model, pretrained_url, use_ssld, load_static_weights=False): if use_ssld: pretrained_url = pretrained_url.replace("_pretrained", "_ssld_pretrained") local_weight_path = get_weights_path_from_url(pretrained_url).replace(".pdparams", "") load_dygraph_pretrain(model, path=local_weight_path, load_static_weights=load_static_weights) return def load_distillation_model(model, pretrained_model, load_static_weights): logger.info("In distillation mode, teacher model will be " "loaded firstly before student model.") if not isinstance(pretrained_model, list): pretrained_model = [pretrained_model] if not isinstance(load_static_weights, list): load_static_weights = [load_static_weights] * len(pretrained_model) teacher = model.teacher if hasattr(model, "teacher") else model._layers.teacher student = model.student if hasattr(model, "student") else model._layers.student load_dygraph_pretrain( teacher, path=pretrained_model[0], load_static_weights=load_static_weights[0]) logger.info("Finish initing teacher model from {}".format( pretrained_model)) # load student model if len(pretrained_model) >= 2: load_dygraph_pretrain( student, path=pretrained_model[1], load_static_weights=load_static_weights[1]) logger.info("Finish initing student model from {}".format( pretrained_model)) def init_model(config, net, optimizer=None): """ load model from checkpoint or pretrained_model """ checkpoints = config.get('checkpoints') if checkpoints and optimizer is not None: assert os.path.exists(checkpoints + ".pdparams"), \ "Given dir {}.pdparams not exist.".format(checkpoints) assert os.path.exists(checkpoints + ".pdopt"), \ "Given dir {}.pdopt not exist.".format(checkpoints) para_dict = paddle.load(checkpoints + ".pdparams") opti_dict = paddle.load(checkpoints + ".pdopt") net.set_dict(para_dict) optimizer.set_state_dict(opti_dict) logger.info("Finish load checkpoints from {}".format(checkpoints)) return pretrained_model = config.get('pretrained_model') load_static_weights = config.get('load_static_weights', False) use_distillation = config.get('use_distillation', False) if pretrained_model: if use_distillation: load_distillation_model(net, pretrained_model, load_static_weights) else: # common load load_dygraph_pretrain( net, path=pretrained_model, load_static_weights=load_static_weights) logger.info( logger.coloring("Finish load pretrained model from {}".format( pretrained_model), "HEADER")) def _save_student_model(net, model_prefix): """ save student model if the net is the network contains student """ student_model_prefix = model_prefix + "_student.pdparams" if hasattr(net, "_layers"): net = net._layers if hasattr(net, "student"): paddle.save(net.student.state_dict(), student_model_prefix) logger.info("Already save student model in {}".format( student_model_prefix)) def save_model(net, optimizer, model_path, model_name="", prefix='ppcls'): """ save model to the target path """ if paddle.distributed.get_rank() != 0: return model_path = os.path.join(model_path, model_name) _mkdir_if_not_exist(model_path) model_prefix = os.path.join(model_path, prefix) _save_student_model(net, model_prefix) paddle.save(net.state_dict(), model_prefix + ".pdparams") paddle.save(optimizer.state_dict(), model_prefix + ".pdopt") logger.info("Already save model in {}".format(model_path))