# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # reference: https://arxiv.org/pdf/1512.03385 from __future__ import absolute_import, division, print_function import numpy as np import paddle from paddle import ParamAttr import paddle.nn as nn from paddle.nn import Conv2D, BatchNorm, Linear, BatchNorm2D from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D from paddle.nn.initializer import Uniform from paddle.regularizer import L2Decay import math from ppcls.arch.backbone.base.theseus_layer import TheseusLayer from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url MODEL_URLS = { "ResNet18": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams", "ResNet18_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams", "ResNet34": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams", "ResNet34_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams", "ResNet50": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams", "ResNet50_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams", "ResNet101": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams", "ResNet101_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams", "ResNet152": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams", "ResNet152_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams", "ResNet200_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams", } MODEL_STAGES_PATTERN = { "ResNet18": ["blocks[1]", "blocks[3]", "blocks[5]", "blocks[7]"], "ResNet34": ["blocks[2]", "blocks[6]", "blocks[12]", "blocks[15]"], "ResNet50": ["blocks[2]", "blocks[6]", "blocks[12]", "blocks[15]"], "ResNet101": ["blocks[2]", "blocks[6]", "blocks[29]", "blocks[32]"], "ResNet152": ["blocks[2]", "blocks[10]", "blocks[46]", "blocks[49]"], "ResNet200": ["blocks[2]", "blocks[14]", "blocks[62]", "blocks[65]"] } __all__ = MODEL_URLS.keys() ''' ResNet config: dict. key: depth of ResNet. values: config's dict of specific model. keys: block_type: Two different blocks in ResNet, BasicBlock and BottleneckBlock are optional. block_depth: The number of blocks in different stages in ResNet. num_channels: The number of channels to enter the next stage. ''' NET_CONFIG = { "18": { "block_type": "BasicBlock", "block_depth": [2, 2, 2, 2], "num_channels": [64, 64, 128, 256] }, "34": { "block_type": "BasicBlock", "block_depth": [3, 4, 6, 3], "num_channels": [64, 64, 128, 256] }, "50": { "block_type": "BottleneckBlock", "block_depth": [3, 4, 6, 3], "num_channels": [64, 256, 512, 1024] }, "101": { "block_type": "BottleneckBlock", "block_depth": [3, 4, 23, 3], "num_channels": [64, 256, 512, 1024] }, "152": { "block_type": "BottleneckBlock", "block_depth": [3, 8, 36, 3], "num_channels": [64, 256, 512, 1024] }, "200": { "block_type": "BottleneckBlock", "block_depth": [3, 12, 48, 3], "num_channels": [64, 256, 512, 1024] }, } class ConvBNLayer(TheseusLayer): def __init__(self, num_channels, num_filters, filter_size, stride=1, groups=1, is_vd_mode=False, act=None, lr_mult=1.0, data_format="NCHW"): super().__init__() self.is_vd_mode = is_vd_mode self.act = act self.avg_pool = AvgPool2D( kernel_size=2, stride=2, padding=0, ceil_mode=True) self.conv = Conv2D( in_channels=num_channels, out_channels=num_filters, kernel_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, weight_attr=ParamAttr(learning_rate=lr_mult), bias_attr=False, data_format=data_format) weight_attr = ParamAttr(learning_rate=lr_mult, trainable=True) bias_attr = ParamAttr(learning_rate=lr_mult, trainable=True) self.bn = BatchNorm( num_filters, param_attr=ParamAttr(learning_rate=lr_mult), bias_attr=ParamAttr(learning_rate=lr_mult), data_layout=data_format) self.relu = nn.ReLU() def forward(self, x): if self.is_vd_mode: x = self.avg_pool(x) x = self.conv(x) x = self.bn(x) if self.act: x = self.relu(x) return x class BottleneckBlock(TheseusLayer): def __init__(self, num_channels, num_filters, stride, shortcut=True, if_first=False, lr_mult=1.0, data_format="NCHW"): super().__init__() self.conv0 = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=1, act="relu", lr_mult=lr_mult, data_format=data_format) self.conv1 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, stride=stride, act="relu", lr_mult=lr_mult, data_format=data_format) self.conv2 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters * 4, filter_size=1, act=None, lr_mult=lr_mult, data_format=data_format) if not shortcut: self.short = ConvBNLayer( num_channels=num_channels, num_filters=num_filters * 4, filter_size=1, stride=stride if if_first else 1, is_vd_mode=False if if_first else True, lr_mult=lr_mult, data_format=data_format) self.relu = nn.ReLU() self.shortcut = shortcut def forward(self, x): identity = x x = self.conv0(x) x = self.conv1(x) x = self.conv2(x) if self.shortcut: short = identity else: short = self.short(identity) x = paddle.add(x=x, y=short) x = self.relu(x) return x class BasicBlock(TheseusLayer): def __init__(self, num_channels, num_filters, stride, shortcut=True, if_first=False, lr_mult=1.0, data_format="NCHW"): super().__init__() self.stride = stride self.conv0 = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=3, stride=stride, act="relu", lr_mult=lr_mult, data_format=data_format) self.conv1 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, act=None, lr_mult=lr_mult, data_format=data_format) if not shortcut: self.short = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=1, stride=stride if if_first else 1, is_vd_mode=False if if_first else True, lr_mult=lr_mult, data_format=data_format) self.shortcut = shortcut self.relu = nn.ReLU() def forward(self, x): identity = x x = self.conv0(x) x = self.conv1(x) if self.shortcut: short = identity else: short = self.short(identity) x = paddle.add(x=x, y=short) x = self.relu(x) return x class ResNet(TheseusLayer): """ ResNet Args: config: dict. config of ResNet. version: str="vb". Different version of ResNet, version vd can perform better. class_num: int=1000. The number of classes. lr_mult_list: list. Control the learning rate of different stages. Returns: model: nn.Layer. Specific ResNet model depends on args. """ def __init__(self, config, stages_pattern, version="vb", stem_act="relu", class_num=1000, lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0], data_format="NCHW", input_image_channel=3, return_patterns=None, return_stages=None, **kargs): super().__init__() self.cfg = config self.lr_mult_list = lr_mult_list self.is_vd_mode = version == "vd" self.class_num = class_num self.num_filters = [64, 128, 256, 512] self.block_depth = self.cfg["block_depth"] self.block_type = self.cfg["block_type"] self.num_channels = self.cfg["num_channels"] self.channels_mult = 1 if self.num_channels[-1] == 256 else 4 assert isinstance(self.lr_mult_list, ( list, tuple )), "lr_mult_list should be in (list, tuple) but got {}".format( type(self.lr_mult_list)) assert len(self.lr_mult_list ) == 5, "lr_mult_list length should be 5 but got {}".format( len(self.lr_mult_list)) self.stem_cfg = { #num_channels, num_filters, filter_size, stride "vb": [[input_image_channel, 64, 7, 2]], "vd": [[input_image_channel, 32, 3, 2], [32, 32, 3, 1], [32, 64, 3, 1]] } self.stem = nn.Sequential(* [ ConvBNLayer( num_channels=in_c, num_filters=out_c, filter_size=k, stride=s, act=stem_act, lr_mult=self.lr_mult_list[0], data_format=data_format) for in_c, out_c, k, s in self.stem_cfg[version] ]) self.max_pool = MaxPool2D( kernel_size=3, stride=2, padding=1, data_format=data_format) block_list = [] for block_idx in range(len(self.block_depth)): shortcut = False for i in range(self.block_depth[block_idx]): block_list.append(globals()[self.block_type]( num_channels=self.num_channels[block_idx] if i == 0 else self.num_filters[block_idx] * self.channels_mult, num_filters=self.num_filters[block_idx], stride=2 if i == 0 and block_idx != 0 else 1, shortcut=shortcut, if_first=block_idx == i == 0 if version == "vd" else True, lr_mult=self.lr_mult_list[block_idx + 1], data_format=data_format)) shortcut = True self.blocks = nn.Sequential(*block_list) self.avg_pool = AdaptiveAvgPool2D(1, data_format=data_format) self.flatten = nn.Flatten() self.avg_pool_channels = self.num_channels[-1] * 2 stdv = 1.0 / math.sqrt(self.avg_pool_channels * 1.0) self.fc = Linear( self.avg_pool_channels, self.class_num, weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv))) self.data_format = data_format super().init_res( stages_pattern, return_patterns=return_patterns, return_stages=return_stages) def forward(self, x): with paddle.static.amp.fp16_guard(): if self.data_format == "NHWC": x = paddle.transpose(x, [0, 2, 3, 1]) x.stop_gradient = True x = self.stem(x) x = self.max_pool(x) x = self.blocks(x) x = self.avg_pool(x) x = self.flatten(x) x = self.fc(x) return x def _load_pretrained(pretrained, model, model_url, use_ssld): if pretrained is False: pass elif pretrained is True: load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) elif isinstance(pretrained, str): load_dygraph_pretrain(model, pretrained) else: raise RuntimeError( "pretrained type is not available. Please use `string` or `boolean` type." ) def ResNet18(pretrained=False, use_ssld=False, **kwargs): """ ResNet18 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `ResNet18` model depends on args. """ model = ResNet( config=NET_CONFIG["18"], stages_pattern=MODEL_STAGES_PATTERN["ResNet18"], version="vb", **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["ResNet18"], use_ssld) return model def ResNet18_vd(pretrained=False, use_ssld=False, **kwargs): """ ResNet18_vd Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `ResNet18_vd` model depends on args. """ model = ResNet( config=NET_CONFIG["18"], stages_pattern=MODEL_STAGES_PATTERN["ResNet18"], version="vd", **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["ResNet18_vd"], use_ssld) return model def ResNet34(pretrained=False, use_ssld=False, **kwargs): """ ResNet34 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `ResNet34` model depends on args. """ model = ResNet( config=NET_CONFIG["34"], stages_pattern=MODEL_STAGES_PATTERN["ResNet34"], version="vb", **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["ResNet34"], use_ssld) return model def ResNet34_vd(pretrained=False, use_ssld=False, **kwargs): """ ResNet34_vd Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `ResNet34_vd` model depends on args. """ model = ResNet( config=NET_CONFIG["34"], stages_pattern=MODEL_STAGES_PATTERN["ResNet34"], version="vd", **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["ResNet34_vd"], use_ssld) return model def ResNet50(pretrained=False, use_ssld=False, **kwargs): """ ResNet50 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `ResNet50` model depends on args. """ model = ResNet( config=NET_CONFIG["50"], stages_pattern=MODEL_STAGES_PATTERN["ResNet50"], version="vb", **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld) return model def ResNet50_vd(pretrained=False, use_ssld=False, **kwargs): """ ResNet50_vd Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `ResNet50_vd` model depends on args. """ model = ResNet( config=NET_CONFIG["50"], stages_pattern=MODEL_STAGES_PATTERN["ResNet50"], version="vd", **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["ResNet50_vd"], use_ssld) return model def ResNet101(pretrained=False, use_ssld=False, **kwargs): """ ResNet101 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `ResNet101` model depends on args. """ model = ResNet( config=NET_CONFIG["101"], stages_pattern=MODEL_STAGES_PATTERN["ResNet101"], version="vb", **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["ResNet101"], use_ssld) return model def ResNet101_vd(pretrained=False, use_ssld=False, **kwargs): """ ResNet101_vd Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `ResNet101_vd` model depends on args. """ model = ResNet( config=NET_CONFIG["101"], stages_pattern=MODEL_STAGES_PATTERN["ResNet101"], version="vd", **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["ResNet101_vd"], use_ssld) return model def ResNet152(pretrained=False, use_ssld=False, **kwargs): """ ResNet152 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `ResNet152` model depends on args. """ model = ResNet( config=NET_CONFIG["152"], stages_pattern=MODEL_STAGES_PATTERN["ResNet152"], version="vb", **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["ResNet152"], use_ssld) return model def ResNet152_vd(pretrained=False, use_ssld=False, **kwargs): """ ResNet152_vd Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `ResNet152_vd` model depends on args. """ model = ResNet( config=NET_CONFIG["152"], stages_pattern=MODEL_STAGES_PATTERN["ResNet152"], version="vd", **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["ResNet152_vd"], use_ssld) return model def ResNet200_vd(pretrained=False, use_ssld=False, **kwargs): """ ResNet200_vd Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `ResNet200_vd` model depends on args. """ model = ResNet( config=NET_CONFIG["200"], stages_pattern=MODEL_STAGES_PATTERN["ResNet200"], version="vd", **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["ResNet200_vd"], use_ssld) return model