# Foundation ViT介绍文档 ## 目录 1. [功能介绍](#1-功能介绍) 2. [使用说明](#2-使用说明) 3. [模型介绍](#3-模型介绍) 4. [参考文献](#4-参考文献) ## 1. 功能介绍 为支持视觉大模型的使用,PaddleClas提供了各系列视觉大模型的预训练权重以及特征提取功能,可使用该功能得到在大数据上完成预训练的视觉大模型特征。 ## 2. 使用说明 以模型 `CLIP_vit_base_patch16_224`为例,使用该模型以及对应的预训练权重进行特征提取的代码如下: ```python from ppcls.utils import config from ppcls.arch import build_model import paddle pretrained = './paddle_weights/CLIP_vit_base_patch16_224.pdparams' # path to pretrained weight cfg = {"Arch": {"name": "CLIP_vit_base_patch16_224"}} model = build_model(cfg, mode="train") model.set_state_dict(paddle.load(pretrained)) inputs = paddle.randn((1,3,224,224)) # create input output = model(inputs) # the output of model embeding ``` ## 3. 模型介绍 目前支持的视觉大模型以及预训练权重如下: | 系列 | 模型 | 模型大小 | embedding_size | 预训练数据集 | 权重下载 | | :----: | :--------------------------------: | :------: | :------------: | :----------------------------------------------: | -------------------------------------------------------------------------------------------------------------------------------- | | CLIP | CLIP_vit_base_patch16_224 | 85M | 768 | WIT | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_base_patch16_224.pdparams) | | CLIP | CLIP_vit_base_patch32_224 | 87M | 768 | WIT | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_base_patch32_224.pdparams) | | CLIP | CLIP_vit_large_patch14_224 | 302M | 1024 | WIT | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_large_patch14_224.pdparams) | | CLIP | CLIP_vit_large_patch14_336 | 302M | 1024 | WIT | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_large_patch14_336.pdparams) | | BEiTv2 | BEiTv2_vit_base_patch16_224 | 85M | 768 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/BEiTv2_vit_base_patch16_224.pdparams) | | BEiTv2 | BEiTv2_vit_base_patch16_224_ft21k | 85M | 768 | ImageNet-1k、ImageNet-21k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/BEiTv2_vit_base_patch16_224_ft21k.pdparams) | | BEiTv2 | BEiTv2_vit_large_patch16_224 | 303M | 1024 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/BEiTv2_vit_large_patch16_224.pdparams) | | BEiTv2 | BEiTv2_vit_large_patch16_224_ft21k | 303M | 1024 | ImageNet-1k、ImageNet-21k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/BEiTv2_vit_large_patch16_224_ft21k.pdparams) | | MoCoV3 | MoCoV3_vit_small | 21M | 384 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MoCoV3_vit_small.pdparams) | | MoCoV3 | MoCoV3_vit_base | 85M | 768 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MoCoV3_vit_base.pdparams) | | MAE | MAE_vit_base_patch16 | 85M | 768 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MAE_vit_base_patch16.pdparams) | | MAE | MAE_vit_large_patch16 | 303M | 1024 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MAE_vit_large_patch16.pdparams) | | MAE | MAE_vit_huge_patch14 | 630M | 1280 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MAE_vit_huge_patch14.pdparams) | | EVA | EVA_vit_giant_patch14 | 1010M | 1408 | ImageNet-21k, CC12M, CC2M, Object365,COCO, ADE | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/EVA_vit_giant_patch14.pdparams) | | CAE | CAE_vit_base_patch16_224 | 85M | 768 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CAE_vit_base_patch16_224.pdparams) | ## 4. 参考文献 1. [MoCo v3: An Empirical Study of Training Self-Supervised Vision Transformers](https://arxiv.org/pdf/2104.02057.pdf) 2. [CLIP: Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 3. [BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers](https://arxiv.org/abs/2208.06366) 4. [CAE: Context Autoencoder for Self-Supervised Representation Learning](https://arxiv.org/abs/2202.03026) 5. [EVA: EVA: Exploring the Limits of Masked Visual Representation Learning at Scale](https://paperswithcode.com/paper/eva-exploring-the-limits-of-masked-visual) 6. [MAE: Masked Autoencoders Are Scalable Vision Learners](https://paperswithcode.com/paper/masked-autoencoders-are-scalable-vision)