# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import errno import os import shutil import tempfile import paddle import paddle.fluid as fluid from ppcls.utils import logger __all__ = ['init_model', 'save_model'] def _mkdir_if_not_exist(path): """ mkdir if not exists, ignore the exception when multiprocess mkdir together """ if not os.path.exists(path): try: os.makedirs(path) except OSError as e: if e.errno == errno.EEXIST and os.path.isdir(path): logger.warning( 'be happy if some process has already created {}'.format( path)) else: raise OSError('Failed to mkdir {}'.format(path)) def _load_state(path): if os.path.exists(path + '.pdopt'): # XXX another hack to ignore the optimizer state tmp = tempfile.mkdtemp() dst = os.path.join(tmp, os.path.basename(os.path.normpath(path))) shutil.copy(path + '.pdparams', dst + '.pdparams') state = fluid.io.load_program_state(dst) shutil.rmtree(tmp) else: state = fluid.io.load_program_state(path) return state def load_params(exe, prog, path, ignore_params=[]): """ Load model from the given path. Args: exe (fluid.Executor): The fluid.Executor object. prog (fluid.Program): load weight to which Program object. path (string): URL string or loca model path. ignore_params (list): ignore variable to load when finetuning. It can be specified by finetune_exclude_pretrained_params and the usage can refer to docs/advanced_tutorials/TRANSFER_LEARNING.md """ if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')): raise ValueError("Model pretrain path {} does not " "exists.".format(path)) logger.info(logger.coloring('Loading parameters from {}...'.format(path), 'HEADER')) ignore_set = set() state = _load_state(path) # ignore the parameter which mismatch the shape # between the model and pretrain weight. all_var_shape = {} for block in prog.blocks: for param in block.all_parameters(): all_var_shape[param.name] = param.shape ignore_set.update([ name for name, shape in all_var_shape.items() if name in state and shape != state[name].shape ]) if ignore_params: all_var_names = [var.name for var in prog.list_vars()] ignore_list = filter( lambda var: any([re.match(name, var) for name in ignore_params]), all_var_names) ignore_set.update(list(ignore_list)) if len(ignore_set) > 0: for k in ignore_set: if k in state: logger.warning('variable {} is already excluded automatically'.format(k)) del state[k] fluid.io.set_program_state(prog, state) def init_model(config, program, exe): """ load model from checkpoint or pretrained_model """ checkpoints = config.get('checkpoints') if checkpoints: fluid.load(program, checkpoints, exe) logger.info(logger.coloring("Finish initing model from {}".format(checkpoints),"HEADER")) return pretrained_model = config.get('pretrained_model') if pretrained_model: if not isinstance(pretrained_model, list): pretrained_model = [pretrained_model] for pretrain in pretrained_model: load_params(exe, program, pretrain) logger.info(logger.coloring("Finish initing model from {}".format(pretrained_model),"HEADER")) def save_model(program, model_path, epoch_id, prefix='ppcls'): """ save model to the target path """ model_path = os.path.join(model_path, str(epoch_id)) _mkdir_if_not_exist(model_path) model_prefix = os.path.join(model_path, prefix) fluid.save(program, model_prefix) logger.info(logger.coloring("Already save model in {}".format(model_path),"HEADER"))