mode: 'train' ARCHITECTURE: name: 'ResNet50_vd' pretrained_model: "" model_save_dir: "./output/" classes_num: 1000 total_images: 1281167 save_interval: 1 validate: True valid_interval: 1 epochs: 200 topk: 5 image_shape: [3, 224, 224] # mixed precision training use_amp: True use_pure_fp16: False multi_precision: False scale_loss: 128.0 use_dynamic_loss_scaleing: True data_format: "NCHW" use_mix: True ls_epsilon: 0.1 LEARNING_RATE: function: 'Cosine' params: lr: 0.1 OPTIMIZER: function: 'Momentum' params: momentum: 0.9 regularizer: function: 'L2' factor: 0.000070 TRAIN: batch_size: 256 num_workers: 4 file_list: "./dataset/ILSVRC2012/train_list.txt" data_dir: "./dataset/ILSVRC2012/" shuffle_seed: 0 transforms: - DecodeImage: to_rgb: True to_np: False channel_first: False - RandCropImage: size: 224 - RandFlipImage: flip_code: 1 - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - ToCHWImage: mix: - MixupOperator: alpha: 0.2 VALID: batch_size: 64 num_workers: 4 file_list: "./dataset/ILSVRC2012/val_list.txt" data_dir: "./dataset/ILSVRC2012/" shuffle_seed: 0 transforms: - DecodeImage: to_rgb: True to_np: False channel_first: False - ResizeImage: resize_short: 256 - CropImage: size: 224 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - ToCHWImage: