# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import time import paddle from ppcls.engine.train.utils import update_loss, update_metric, log_info def train_epoch(trainer, epoch_id, print_batch_step): tic = time.time() train_dataloader = trainer.train_dataloader if trainer.use_dali else trainer.train_dataloader( ) for iter_id, batch in enumerate(train_dataloader): if iter_id >= trainer.max_iter: break if iter_id == 5: for key in trainer.time_info: trainer.time_info[key].reset() trainer.time_info["reader_cost"].update(time.time() - tic) if trainer.use_dali: batch = [ paddle.to_tensor(batch[0]['data']), paddle.to_tensor(batch[0]['label']) ] batch_size = batch[0].shape[0] batch[1] = batch[1].reshape([-1, 1]).astype("int64") trainer.global_step += 1 # image input if trainer.amp: with paddle.amp.auto_cast(custom_black_list={ "flatten_contiguous_range", "greater_than" }): out = forward(trainer, batch) loss_dict = trainer.train_loss_func(out, batch[1]) else: out = forward(trainer, batch) # calc loss if trainer.config["DataLoader"]["Train"]["dataset"].get( "batch_transform_ops", None): loss_dict = trainer.train_loss_func(out, batch[1:]) else: loss_dict = trainer.train_loss_func(out, batch[1]) # step opt and lr if trainer.amp: scaled = trainer.scaler.scale(loss_dict["loss"]) scaled.backward() trainer.scaler.minimize(trainer.optimizer, scaled) else: loss_dict["loss"].backward() trainer.optimizer.step() trainer.optimizer.clear_grad() trainer.lr_sch.step() # below code just for logging # update metric_for_logger update_metric(trainer, out, batch, batch_size) # update_loss_for_logger update_loss(trainer, loss_dict, batch_size) trainer.time_info["batch_cost"].update(time.time() - tic) if iter_id % print_batch_step == 0: log_info(trainer, batch_size, epoch_id, iter_id) tic = time.time() def forward(trainer, batch): if not trainer.is_rec: return trainer.model(batch[0]) else: return trainer.model(batch[0], batch[1])