#!/bin/bash FILENAME=$1 source test_tipc/common_func.sh # MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer', 'whole_infer', 'klquant_whole_infer'] MODE=$2 dataline=$(cat ${FILENAME}) # parser params IFS=$'\n' lines=(${dataline}) # The training params model_name=$(func_parser_value "${lines[1]}") python=$(func_parser_value "${lines[2]}") gpu_list=$(func_parser_value "${lines[3]}") train_use_gpu_key=$(func_parser_key "${lines[4]}") train_use_gpu_value=$(func_parser_value "${lines[4]}") autocast_list=$(func_parser_value "${lines[5]}") autocast_key=$(func_parser_key "${lines[5]}") epoch_key=$(func_parser_key "${lines[6]}") epoch_num=$(func_parser_params "${lines[6]}") save_model_key=$(func_parser_key "${lines[7]}") train_batch_key=$(func_parser_key "${lines[8]}") train_batch_value=$(func_parser_value "${lines[8]}") pretrain_model_key=$(func_parser_key "${lines[9]}") pretrain_model_value=$(func_parser_value "${lines[9]}") train_model_name=$(func_parser_value "${lines[10]}") train_infer_img_dir=$(func_parser_value "${lines[11]}") train_param_key1=$(func_parser_key "${lines[12]}") train_param_value1=$(func_parser_value "${lines[12]}") trainer_list=$(func_parser_value "${lines[14]}") trainer_norm=$(func_parser_key "${lines[15]}") norm_trainer=$(func_parser_value "${lines[15]}") pact_key=$(func_parser_key "${lines[16]}") pact_trainer=$(func_parser_value "${lines[16]}") fpgm_key=$(func_parser_key "${lines[17]}") fpgm_trainer=$(func_parser_value "${lines[17]}") distill_key=$(func_parser_key "${lines[18]}") distill_trainer=$(func_parser_value "${lines[18]}") to_static_key=$(func_parser_key "${lines[19]}") to_static_trainer=$(func_parser_value "${lines[19]}") trainer_key2=$(func_parser_key "${lines[20]}") trainer_value2=$(func_parser_value "${lines[20]}") eval_py=$(func_parser_value "${lines[23]}") eval_key1=$(func_parser_key "${lines[24]}") eval_value1=$(func_parser_value "${lines[24]}") save_infer_key=$(func_parser_key "${lines[27]}") export_weight=$(func_parser_key "${lines[28]}") norm_export=$(func_parser_value "${lines[29]}") pact_export=$(func_parser_value "${lines[30]}") fpgm_export=$(func_parser_value "${lines[31]}") distill_export=$(func_parser_value "${lines[32]}") kl_quant_cmd_key=$(func_parser_key "${lines[33]}") kl_quant_cmd_value=$(func_parser_value "${lines[33]}") export_key2=$(func_parser_key "${lines[34]}") export_value2=$(func_parser_value "${lines[34]}") # parser inference model infer_model_dir_list=$(func_parser_value "${lines[36]}") infer_export_flag=$(func_parser_value "${lines[37]}") infer_is_quant=$(func_parser_value "${lines[38]}") # parser inference inference_py=$(func_parser_value "${lines[39]}") use_gpu_key=$(func_parser_key "${lines[40]}") use_gpu_list=$(func_parser_value "${lines[40]}") use_mkldnn_key=$(func_parser_key "${lines[41]}") use_mkldnn_list=$(func_parser_value "${lines[41]}") cpu_threads_key=$(func_parser_key "${lines[42]}") cpu_threads_list=$(func_parser_value "${lines[42]}") batch_size_key=$(func_parser_key "${lines[43]}") batch_size_list=$(func_parser_value "${lines[43]}") use_trt_key=$(func_parser_key "${lines[44]}") use_trt_list=$(func_parser_value "${lines[44]}") precision_key=$(func_parser_key "${lines[45]}") precision_list=$(func_parser_value "${lines[45]}") infer_model_key=$(func_parser_key "${lines[46]}") image_dir_key=$(func_parser_key "${lines[47]}") infer_img_dir=$(func_parser_value "${lines[47]}") save_log_key=$(func_parser_key "${lines[48]}") benchmark_key=$(func_parser_key "${lines[49]}") benchmark_value=$(func_parser_value "${lines[49]}") infer_key1=$(func_parser_key "${lines[50]}") infer_value1=$(func_parser_value "${lines[50]}") if [ ! $epoch_num ]; then epoch_num=2 fi if [[ $MODE = 'benchmark_train' ]]; then epoch_num=1 fi CLS_ROOT_PATH=$(pwd) LOG_PATH="${CLS_ROOT_PATH}/test_tipc/output/${model_name}/${MODE}" mkdir -p ${LOG_PATH} status_log="${LOG_PATH}/results_python.log" function func_inference() { IFS='|' _python=$1 _script=$2 _model_dir=$3 _log_path=$4 _img_dir=$5 _flag_quant=$6 _gpu=$7 # inference for use_gpu in ${use_gpu_list[*]}; do if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then for use_mkldnn in ${use_mkldnn_list[*]}; do for threads in ${cpu_threads_list[*]}; do for batch_size in ${batch_size_list[*]}; do for precision in ${precision_list[*]}; do _save_log_path="${_log_path}/python_infer_cpu_gpus_${_gpu}_usemkldnn_${use_mkldnn}_threads_${threads}_precision_${precision}_batchsize_${batch_size}.log" set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}") set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " eval $command last_status=${PIPESTATUS[0]} eval "cat ${_save_log_path}" status_check $last_status "${command}" "${status_log}" "${model_name}" "${_save_log_path}" done done done done elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then for use_trt in ${use_trt_list[*]}; do for precision in ${precision_list[*]}; do if [ ${precision} = "True" ] && [ ${use_trt} = "False" ]; then continue fi for batch_size in ${batch_size_list[*]}; do _save_log_path="${_log_path}/python_infer_gpu_gpus_${_gpu}_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}") set_precision=$(func_set_params "${precision_key}" "${precision}") set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 " eval $command last_status=${PIPESTATUS[0]} eval "cat ${_save_log_path}" status_check $last_status "${command}" "${status_log}" "${model_name}" "${_save_log_path}" done done done else echo "Does not support hardware other than CPU and GPU Currently!" fi done } if [[ ${MODE} = "whole_infer" ]]; then # for kl_quant if [ ${kl_quant_cmd_value} != "null" ] && [ ${kl_quant_cmd_value} != "False" ]; then echo "kl_quant" log_path="${LOG_PATH}/export.log" command="${python} ${kl_quant_cmd_value} > ${log_path} 2>&1" echo ${command} eval $command last_status=${PIPESTATUS[0]} status_check $last_status "${command}" "${status_log}" "${model_name}" "${log_path}" cd ${infer_model_dir_list}/quant_post_static_model ln -s model.pdmodel inference.pdmodel ln -s model.pdiparams inference.pdiparams cd ../../deploy is_quant=True gpu=0 func_inference "${python}" "${inference_py}" "../${infer_model_dir_list}/quant_post_static_model" "${LOG_PATH}" "${infer_img_dir}" "${is_quant}" "${gpu}" cd .. fi else IFS="|" export Count=0 USE_GPU_KEY=(${train_use_gpu_value}) for gpu in ${gpu_list[*]}; do train_use_gpu=${USE_GPU_KEY[Count]} Count=$(($Count + 1)) ips="" if [ ${gpu} = "-1" ]; then env="" elif [ ${#gpu} -le 1 ]; then env="export CUDA_VISIBLE_DEVICES=${gpu}" eval ${env} elif [ ${#gpu} -le 15 ]; then IFS="," array=(${gpu}) env="export CUDA_VISIBLE_DEVICES=${array[0]}" IFS="|" else IFS=";" array=(${gpu}) ips=${array[0]} gpu=${array[1]} IFS="|" env=" " fi for autocast in ${autocast_list[*]}; do for trainer in ${trainer_list[*]}; do flag_quant=False if [ ${trainer} = ${pact_key} ]; then run_train=${pact_trainer} run_export=${pact_export} flag_quant=True elif [ ${trainer} = "${fpgm_key}" ]; then run_train=${fpgm_trainer} run_export=${fpgm_export} elif [ ${trainer} = "${distill_key}" ]; then run_train=${distill_trainer} run_export=${distill_export} # In case of @to_static, we re-used norm_traier, # but append "-o Global.to_static=True" for config # to trigger "apply_to_static" logic in 'engine.py' elif [ ${trainer} = "${to_static_key}" ]; then run_train="${norm_trainer} ${to_static_trainer}" run_export=${norm_export} elif [[ ${trainer} = ${trainer_key2} ]]; then run_train=${trainer_value2} run_export=${export_value2} else run_train=${norm_trainer} run_export=${norm_export} fi if [ ${run_train} = "null" ]; then continue fi set_autocast=$(func_set_amp_params "${autocast_key}" "${autocast}") set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}") set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}") set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}") set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}") set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${train_use_gpu_value}") if [ ${#ips} -le 15 ]; then # if length of ips >= 15, then it is seen as multi-machine # 15 is the min length of ips info for multi-machine: 0.0.0.0,0.0.0.0 save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_1" nodes=1 else IFS="," ips_array=(${ips}) IFS="|" nodes=${#ips_array[@]} save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}" fi # load pretrain from norm training if current trainer is pact or fpgm trainer # if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then # set_pretrain="${load_norm_train_model}" # fi set_save_model=$(func_set_params "${save_model_key}" "${save_log}") if [ ${#gpu} -le 2 ]; then # train with cpu or single gpu cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} " elif [ ${#ips} -le 15 ]; then # train with multi-gpu cmd="${python} -m paddle.distributed.launch --devices=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}" else # train with multi-machine cmd="${python} -m paddle.distributed.launch --ips=${ips} --devices=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}" fi # run train # export FLAGS_cudnn_deterministic=True sleep 5 eval $cmd if [[ $model_name == *GeneralRecognition* ]]; then eval "cat ${save_log}/RecModel/train.log >> ${save_log}.log" else eval "cat ${save_log}/${model_name}/train.log >> ${save_log}.log" fi status_check $? "${cmd}" "${status_log}" "${model_name}" "${save_log}.log" sleep 5 if [[ $model_name == *GeneralRecognition* ]]; then set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/RecModel/${train_model_name}") else set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${model_name}/${train_model_name}") fi # save norm trained models to set pretrain for pact training and fpgm training if [[ ${trainer} = ${trainer_norm} || ${trainer} = ${pact_key} ]]; then load_norm_train_model=${set_eval_pretrain} fi # run eval if [ ${eval_py} != "null" ]; then set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}") eval_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_eval.log" eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1} > ${eval_log_path} 2>&1" eval $eval_cmd status_check $? "${eval_cmd}" "${status_log}" "${model_name}" "${eval_log_path}" sleep 5 fi # run export model if [ ${run_export} != "null" ]; then # run export model save_infer_path="${save_log}" if [[ $model_name == *GeneralRecognition* ]]; then set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/RecModel/${train_model_name}") else set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${model_name}/${train_model_name}") fi set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}") export_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_export.log" export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key} > ${export_log_path} 2>&1" eval $export_cmd status_check $? "${export_cmd}" "${status_log}" "${model_name}" "${export_log_path}" # run inference eval $env save_infer_path="${save_log}" cd deploy func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}" "${flag_quant}" "${gpu}" cd .. fi eval "unset CUDA_VISIBLE_DEVICES" done # done with: for trainer in ${trainer_list[*]}; do done # done with: for autocast in ${autocast_list[*]}; do done # done with: for gpu in ${gpu_list[*]}; do fi # end if [ ${MODE} = "infer" ]; then