#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import paddle import paddle.nn as nn class DSHSDLoss(nn.Layer): """ # DSHSD(IEEE ACCESS 2019) # paper [Deep Supervised Hashing Based on Stable Distribution](https://ieeexplore.ieee.org/document/8648432/) """ def __init__(self, alpha, multi_label=False): super(DSHSDLoss, self).__init__() self.alpha = alpha self.multi_label = multi_label def forward(self, input, label): feature = input["features"] logits = input["logits"] dist = paddle.sum(paddle.square( (paddle.unsqueeze(feature, 1) - paddle.unsqueeze(feature, 0))), axis=2) # label to ont-hot n_class = logits.shape[1] label = paddle.nn.functional.one_hot( label, n_class).astype("float32").squeeze() s = (paddle.matmul( label, label, transpose_y=True) == 0).astype("float32") margin = 2 * feature.shape[1] Ld = (1 - s) / 2 * dist + s / 2 * (margin - dist).clip(min=0) Ld = Ld.mean() if self.multi_label: # multiple labels classification loss Lc = (logits - label * logits + ( (1 + (-logits).exp()).log())).sum(axis=1).mean() else: # single labels classification loss Lc = (-paddle.nn.functional.softmax(logits).log() * label).sum( axis=1).mean() return {"dshsdloss": Lc + Ld * self.alpha} class LCDSHLoss(nn.Layer): """ # paper [Locality-Constrained Deep Supervised Hashing for Image Retrieval](https://www.ijcai.org/Proceedings/2017/0499.pdf) """ def __init__(self, n_class, _lambda): super(LCDSHLoss, self).__init__() self._lambda = _lambda self.n_class = n_class def forward(self, input, label): feature = input["features"] label = paddle.nn.functional.one_hot( label, self.n_class).astype("float32").squeeze() s = 2 * (paddle.matmul( label, label, transpose_y=True) > 0).astype("float32") - 1 inner_product = paddle.matmul(feature, feature, transpose_y=True) * 0.5 inner_product = inner_product.clip(min=-50, max=50) L1 = paddle.log(1 + paddle.exp(-s * inner_product)).mean() b = feature.sign() inner_product_ = paddle.matmul(b, b, transpose_y=True) * 0.5 sigmoid = paddle.nn.Sigmoid() L2 = (sigmoid(inner_product) - sigmoid(inner_product_)).pow(2).mean() return {"lcdshloss": L1 + self._lambda * L2} class DCHLoss(paddle.nn.Layer): """ # paper [Deep Cauchy Hashing for Hamming Space Retrieval] URL:(http://ise.thss.tsinghua.edu.cn/~mlong/doc/deep-cauchy-hashing-cvpr18.pdf) """ def __init__(self, gamma, _lambda, n_class): super(DCHLoss, self).__init__() self.gamma = gamma self._lambda = _lambda self.n_class = n_class def distance(self, feature_i, feature_j): assert feature_i.shape[1] == feature_j.shape[ 1], "feature len of feature_i and feature_j is different, please check whether the featurs are right" K = feature_i.shape[1] inner_product = paddle.matmul(feature_i, feature_j, transpose_y=True) len_i = feature_i.pow(2).sum(axis=1, keepdim=True).pow(0.5) len_j = feature_j.pow(2).sum(axis=1, keepdim=True).pow(0.5) norm = paddle.matmul(len_i, len_j, transpose_y=True) cos = inner_product / norm.clip(min=0.0001) return (1 - cos.clip(max=0.99)) * K / 2 def forward(self, input, label): u = input["features"] y = paddle.nn.functional.one_hot( label, self.n_class).astype("float32").squeeze() s = paddle.matmul(y, y, transpose_y=True).astype("float32") if (1 - s).sum() != 0 and s.sum() != 0: positive_w = s * s.numel() / s.sum() negative_w = (1 - s) * s.numel() / (1 - s).sum() w = positive_w + negative_w else: w = 1 d_hi_hj = self.distance(u, u) cauchy_loss = w * (s * paddle.log(d_hi_hj / self.gamma) + paddle.log(1 + self.gamma / d_hi_hj)) all_one = paddle.ones_like(u, dtype="float32") quantization_loss = paddle.log(1 + self.d(u.abs(), all_one) / self.gamma) loss = cauchy_loss.mean() + self._lambda * quantization_loss.mean() return {"dchloss": loss}