# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import platform import paddle import paddle.distributed as dist from visualdl import LogWriter from paddle import nn import numpy as np import random from ppcls.utils.check import check_gpu from ppcls.utils.misc import AverageMeter from ppcls.utils import logger from ppcls.utils.logger import init_logger from ppcls.utils.config import print_config from ppcls.data import build_dataloader from ppcls.arch import build_model, RecModel, DistillationModel, TheseusLayer from ppcls.arch import apply_to_static from ppcls.loss import build_loss from ppcls.metric import build_metrics from ppcls.optimizer import build_optimizer from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url from ppcls.utils.save_load import init_model from ppcls.utils import save_load from ppcls.data.utils.get_image_list import get_image_list from ppcls.data.postprocess import build_postprocess from ppcls.data import create_operators from ppcls.engine.train import train_epoch from ppcls.engine import evaluation from ppcls.arch.gears.identity_head import IdentityHead class Engine(object): def __init__(self, config, mode="train"): assert mode in ["train", "eval", "infer", "export"] self.mode = mode self.config = config self.eval_mode = self.config["Global"].get("eval_mode", "classification") if "Head" in self.config["Arch"] or self.config["Arch"].get("is_rec", False): self.is_rec = True else: self.is_rec = False # set seed seed = self.config["Global"].get("seed", False) if seed or seed == 0: assert isinstance(seed, int), "The 'seed' must be a integer!" paddle.seed(seed) np.random.seed(seed) random.seed(seed) # init logger self.output_dir = self.config['Global']['output_dir'] log_file = os.path.join(self.output_dir, self.config["Arch"]["name"], f"{mode}.log") init_logger(log_file=log_file) print_config(config) # init train_func and eval_func assert self.eval_mode in ["classification", "retrieval"], logger.error( "Invalid eval mode: {}".format(self.eval_mode)) self.train_epoch_func = train_epoch self.eval_func = getattr(evaluation, self.eval_mode + "_eval") self.use_dali = self.config['Global'].get("use_dali", False) # for visualdl self.vdl_writer = None if self.config['Global'][ 'use_visualdl'] and mode == "train" and dist.get_rank() == 0: vdl_writer_path = os.path.join(self.output_dir, "vdl") if not os.path.exists(vdl_writer_path): os.makedirs(vdl_writer_path) self.vdl_writer = LogWriter(logdir=vdl_writer_path) # set device assert self.config["Global"]["device"] in ["cpu", "gpu", "xpu", "npu", "mlu"] self.device = paddle.set_device(self.config["Global"]["device"]) logger.info('train with paddle {} and device {}'.format( paddle.__version__, self.device)) # AMP training self.amp = True if "AMP" in self.config and self.mode == "train" else False if self.amp and self.config["AMP"] is not None: self.scale_loss = self.config["AMP"].get("scale_loss", 1.0) self.use_dynamic_loss_scaling = self.config["AMP"].get( "use_dynamic_loss_scaling", False) else: self.scale_loss = 1.0 self.use_dynamic_loss_scaling = False if self.amp: AMP_RELATED_FLAGS_SETTING = { 'FLAGS_max_inplace_grad_add': 8, } if paddle.is_compiled_with_cuda(): AMP_RELATED_FLAGS_SETTING.update({ 'FLAGS_cudnn_batchnorm_spatial_persistent': 1 }) paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING) if "class_num" in config["Global"]: global_class_num = config["Global"]["class_num"] if "class_num" not in config["Arch"]: config["Arch"]["class_num"] = global_class_num msg = f"The Global.class_num will be deprecated. Please use Arch.class_num instead. Arch.class_num has been set to {global_class_num}." else: msg = "The Global.class_num will be deprecated. Please use Arch.class_num instead. The Global.class_num has been ignored." logger.warning(msg) #TODO(gaotingquan): support rec class_num = config["Arch"].get("class_num", None) self.config["DataLoader"].update({"class_num": class_num}) # build dataloader if self.mode == 'train': self.train_dataloader = build_dataloader( self.config["DataLoader"], "Train", self.device, self.use_dali) if self.mode == "eval" or (self.mode == "train" and self.config["Global"]["eval_during_train"]): if self.eval_mode == "classification": self.eval_dataloader = build_dataloader( self.config["DataLoader"], "Eval", self.device, self.use_dali) elif self.eval_mode == "retrieval": self.gallery_query_dataloader = None if len(self.config["DataLoader"]["Eval"].keys()) == 1: key = list(self.config["DataLoader"]["Eval"].keys())[0] self.gallery_query_dataloader = build_dataloader( self.config["DataLoader"]["Eval"], key, self.device, self.use_dali) else: self.gallery_dataloader = build_dataloader( self.config["DataLoader"]["Eval"], "Gallery", self.device, self.use_dali) self.query_dataloader = build_dataloader( self.config["DataLoader"]["Eval"], "Query", self.device, self.use_dali) # build loss if self.mode == "train": loss_info = self.config["Loss"]["Train"] self.train_loss_func = build_loss(loss_info) if self.mode == "eval" or (self.mode == "train" and self.config["Global"]["eval_during_train"]): loss_config = self.config.get("Loss", None) if loss_config is not None: loss_config = loss_config.get("Eval") if loss_config is not None: self.eval_loss_func = build_loss(loss_config) else: self.eval_loss_func = None else: self.eval_loss_func = None # build metric if self.mode == 'train': metric_config = self.config.get("Metric") if metric_config is not None: metric_config = metric_config.get("Train") if metric_config is not None: if hasattr( self.train_dataloader, "collate_fn" ) and self.train_dataloader.collate_fn is not None: for m_idx, m in enumerate(metric_config): if "TopkAcc" in m: msg = f"'TopkAcc' metric can not be used when setting 'batch_transform_ops' in config. The 'TopkAcc' metric has been removed." logger.warning(msg) break metric_config.pop(m_idx) self.train_metric_func = build_metrics(metric_config) else: self.train_metric_func = None else: self.train_metric_func = None if self.mode == "eval" or (self.mode == "train" and self.config["Global"]["eval_during_train"]): metric_config = self.config.get("Metric") if self.eval_mode == "classification": if metric_config is not None: metric_config = metric_config.get("Eval") if metric_config is not None: self.eval_metric_func = build_metrics(metric_config) elif self.eval_mode == "retrieval": if metric_config is None: metric_config = [{"name": "Recallk", "topk": (1, 5)}] else: metric_config = metric_config["Eval"] self.eval_metric_func = build_metrics(metric_config) else: self.eval_metric_func = None # build model self.model = build_model(self.config) # set @to_static for benchmark, skip this by default. apply_to_static(self.config, self.model) # load_pretrain if self.config["Global"]["pretrained_model"] is not None: if self.config["Global"]["pretrained_model"].startswith("http"): load_dygraph_pretrain_from_url( self.model, self.config["Global"]["pretrained_model"]) else: load_dygraph_pretrain( self.model, self.config["Global"]["pretrained_model"]) # build optimizer if self.mode == 'train': self.optimizer, self.lr_sch = build_optimizer( self.config["Optimizer"], self.config["Global"]["epochs"], len(self.train_dataloader), [self.model]) # for amp training if self.amp: self.scaler = paddle.amp.GradScaler( init_loss_scaling=self.scale_loss, use_dynamic_loss_scaling=self.use_dynamic_loss_scaling) amp_level = self.config['AMP'].get("level", "O1") if amp_level not in ["O1", "O2"]: msg = "[Parameter Error]: The optimize level of AMP only support 'O1' and 'O2'. The level has been set 'O1'." logger.warning(msg) self.config['AMP']["level"] = "O1" amp_level = "O1" self.model, self.optimizer = paddle.amp.decorate( models=self.model, optimizers=self.optimizer, level=amp_level, save_dtype='float32') # for distributed world_size = dist.get_world_size() self.config["Global"]["distributed"] = world_size != 1 if world_size != 4 and self.mode == "train": msg = f"The training strategy in config files provided by PaddleClas is based on 4 gpus. But the number of gpus is {world_size} in current training. Please modify the stategy (learning rate, batch size and so on) if use config files in PaddleClas to train." logger.warning(msg) if self.config["Global"]["distributed"]: dist.init_parallel_env() self.model = paddle.DataParallel(self.model) # build postprocess for infer if self.mode == 'infer': self.preprocess_func = create_operators(self.config["Infer"][ "transforms"]) self.postprocess_func = build_postprocess(self.config["Infer"][ "PostProcess"]) def train(self): assert self.mode == "train" print_batch_step = self.config['Global']['print_batch_step'] save_interval = self.config["Global"]["save_interval"] best_metric = { "metric": 0.0, "epoch": 0, } # key: # val: metrics list word self.output_info = dict() self.time_info = { "batch_cost": AverageMeter( "batch_cost", '.5f', postfix=" s,"), "reader_cost": AverageMeter( "reader_cost", ".5f", postfix=" s,"), } # global iter counter self.global_step = 0 if self.config["Global"]["checkpoints"] is not None: metric_info = init_model(self.config["Global"], self.model, self.optimizer) if metric_info is not None: best_metric.update(metric_info) self.max_iter = len(self.train_dataloader) - 1 if platform.system( ) == "Windows" else len(self.train_dataloader) for epoch_id in range(best_metric["epoch"] + 1, self.config["Global"]["epochs"] + 1): acc = 0.0 # for one epoch train self.train_epoch_func(self, epoch_id, print_batch_step) if self.use_dali: self.train_dataloader.reset() metric_msg = ", ".join([ "{}: {:.5f}".format(key, self.output_info[key].avg) for key in self.output_info ]) logger.info("[Train][Epoch {}/{}][Avg]{}".format( epoch_id, self.config["Global"]["epochs"], metric_msg)) self.output_info.clear() # eval model and save model if possible if self.config["Global"][ "eval_during_train"] and epoch_id % self.config["Global"][ "eval_interval"] == 0: acc = self.eval(epoch_id) if acc > best_metric["metric"]: best_metric["metric"] = acc best_metric["epoch"] = epoch_id save_load.save_model( self.model, self.optimizer, best_metric, self.output_dir, model_name=self.config["Arch"]["name"], prefix="best_model") logger.info("[Eval][Epoch {}][best metric: {}]".format( epoch_id, best_metric["metric"])) logger.scaler( name="eval_acc", value=acc, step=epoch_id, writer=self.vdl_writer) self.model.train() # save model if epoch_id % save_interval == 0: save_load.save_model( self.model, self.optimizer, {"metric": acc, "epoch": epoch_id}, self.output_dir, model_name=self.config["Arch"]["name"], prefix="epoch_{}".format(epoch_id)) # save the latest model save_load.save_model( self.model, self.optimizer, {"metric": acc, "epoch": epoch_id}, self.output_dir, model_name=self.config["Arch"]["name"], prefix="latest") if self.vdl_writer is not None: self.vdl_writer.close() @paddle.no_grad() def eval(self, epoch_id=0): assert self.mode in ["train", "eval"] self.model.eval() eval_result = self.eval_func(self, epoch_id) self.model.train() return eval_result @paddle.no_grad() def infer(self): assert self.mode == "infer" and self.eval_mode == "classification" total_trainer = dist.get_world_size() local_rank = dist.get_rank() image_list = get_image_list(self.config["Infer"]["infer_imgs"]) # data split image_list = image_list[local_rank::total_trainer] batch_size = self.config["Infer"]["batch_size"] self.model.eval() batch_data = [] image_file_list = [] for idx, image_file in enumerate(image_list): with open(image_file, 'rb') as f: x = f.read() for process in self.preprocess_func: x = process(x) batch_data.append(x) image_file_list.append(image_file) if len(batch_data) >= batch_size or idx == len(image_list) - 1: batch_tensor = paddle.to_tensor(batch_data) out = self.model(batch_tensor) if isinstance(out, list): out = out[0] if isinstance(out, dict) and "logits" in out: out = out["logits"] if isinstance(out, dict) and "output" in out: out = out["output"] result = self.postprocess_func(out, image_file_list) print(result) batch_data.clear() image_file_list.clear() def export(self): assert self.mode == "export" use_multilabel = self.config["Global"].get("use_multilabel", False) model = ExportModel(self.config["Arch"], self.model, use_multilabel) if self.config["Global"]["pretrained_model"] is not None: load_dygraph_pretrain(model.base_model, self.config["Global"]["pretrained_model"]) model.eval() save_path = os.path.join(self.config["Global"]["save_inference_dir"], "inference") if model.quanter: model.quanter.save_quantized_model( model.base_model, save_path, input_spec=[ paddle.static.InputSpec( shape=[None] + self.config["Global"]["image_shape"], dtype='float32') ]) else: model = paddle.jit.to_static( model, input_spec=[ paddle.static.InputSpec( shape=[None] + self.config["Global"]["image_shape"], dtype='float32') ]) paddle.jit.save(model, save_path) class ExportModel(TheseusLayer): """ ExportModel: add softmax onto the model """ def __init__(self, config, model, use_multilabel): super().__init__() self.base_model = model # we should choose a final model to export if isinstance(self.base_model, DistillationModel): self.infer_model_name = config["infer_model_name"] else: self.infer_model_name = None self.infer_output_key = config.get("infer_output_key", None) if self.infer_output_key == "features" and isinstance(self.base_model, RecModel): self.base_model.head = IdentityHead() if use_multilabel: self.out_act = nn.Sigmoid() else: if config.get("infer_add_softmax", True): self.out_act = nn.Softmax(axis=-1) else: self.out_act = None def eval(self): self.training = False for layer in self.sublayers(): layer.training = False layer.eval() def forward(self, x): x = self.base_model(x) if isinstance(x, list): x = x[0] if self.infer_model_name is not None: x = x[self.infer_model_name] if self.infer_output_key is not None: x = x[self.infer_output_key] if self.out_act is not None: x = self.out_act(x) return x