# EfficientNet 系列 ----- ## 目录 - [1. 模型介绍](#1) - [1.1 模型简介](#1.1) - [1.2 模型指标](#1.2) - [1.3 Benchmark](#1.3) - [1.3.1 基于 V100 GPU 的预测速度](#1.3.1) - [1.3.2 基于 T4 GPU 的预测速度](#1.3.2) - [2. 模型快速体验](#2) - [3. 模型训练、评估和预测](#3) - [4. 模型推理部署](#4) - [4.1 推理模型准备](#4.1) - [4.2 基于 Python 预测引擎推理](#4.2) - [4.3 基于 C++ 预测引擎推理](#4.3) - [4.4 服务化部署](#4.4) - [4.5 端侧部署](#4.5) - [4.6 Paddle2ONNX 模型转换与预测](#4.6) ## 1. 模型介绍 ### 1.1 模型简介 EfficientNet 是 Google 于 2019 年发布的一个基于 NAS 的轻量级网络,其中 EfficientNetB7 刷新了当时 ImageNet-1k 的分类准确率。在该文章中,作者指出,传统的提升神经网络性能的方法主要是从网络的宽度、网络的深度、以及输入图片的分辨率入手,但是作者通过实验发现,平衡这三个维度对精度和效率的提升至关重要,于是,作者通过一系列的实验中总结出了如何同时平衡这三个维度的放缩,与此同时,基于这种放缩方法,作者在 EfficientNet_B0 的基础上,构建了 EfficientNet 系列中 B1-B7 共 7 个网络,并在同样 FLOPs 与参数量的情况下,精度达到了 state-of-the-art 的效果。 该系列模型的 FLOPs、参数量以及 T4 GPU 上的预测耗时如下图所示。 ![](../../images/models/T4_benchmark/t4.fp32.bs4.EfficientNet.flops.png) ![](../../images/models/T4_benchmark/t4.fp32.bs4.EfficientNet.params.png) ![](../../images/models/T4_benchmark/t4.fp32.bs1.EfficientNet.png) ![](../../images/models/T4_benchmark/t4.fp16.bs1.EfficientNet.png) 目前 PaddleClas 开源的 EfficientNet 与 ResNeXt 预训练模型一共有 14 个。从上图中可以看出 EfficientNet 系列网络优势非常明显,EfficientNet_B0_Small 是去掉了 SE_block 的 EfficientNet_B0,其具有更快的推理速度。 ### 1.2 模型指标 | Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPs
(G) | Params
(M) | |:--:|:--:|:--:|:--:|:--:|:--:|:--:| | EfficientNetB0 | 0.774 | 0.933 | 0.773 | 0.935 | 0.720 | 5.100 | | EfficientNetB1 | 0.792 | 0.944 | 0.792 | 0.945 | 1.270 | 7.520 | | EfficientNetB2 | 0.799 | 0.947 | 0.803 | 0.950 | 1.850 | 8.810 | | EfficientNetB3 | 0.812 | 0.954 | 0.817 | 0.956 | 3.430 | 11.840 | | EfficientNetB4 | 0.829 | 0.962 | 0.830 | 0.963 | 8.290 | 18.760 | | EfficientNetB5 | 0.836 | 0.967 | 0.837 | 0.967 | 19.510 | 29.610 | | EfficientNetB6 | 0.840 | 0.969 | 0.842 | 0.968 | 36.270 | 42.000 | | EfficientNetB7 | 0.843 | 0.969 | 0.844 | 0.971 | 72.350 | 64.920 | | EfficientNetB0_
small | 0.758 | 0.926 | | | 0.720 | 4.650 | **备注:** PaddleClas 所提供的该系列模型中,EfficientNetB1-B7模型的预训练模型权重,均是基于其官方提供的权重转得。 ### 1.3 Benchmark #### 1.3.1 基于 V100 GPU 的预测速度 | Models | Size | Latency(ms)
bs=1 | Latency(ms)
bs=4 | Latency(ms)
bs=8 | |-------------------------------|-------------------|-------------------------------|-------------------------------|-------------------------------| | EfficientNetB0 | 224 | 1.96 | 3.71 | 5.56 | | EfficientNetB1 | 240 | 2.88 | 5.40 | 7.63 | | EfficientNetB2 | 260 | 3.26 | 6.20 | 9.17 | | EfficientNetB3 | 300 | 4.52 | 8.85 | 13.54 | | EfficientNetB4 | 380 | 6.78 | 15.47 | 24.95 | | EfficientNetB5 | 456 | 10.97 | 27.24 | 45.93 | | EfficientNetB6 | 528 | 17.09 | 43.32 | 76.90 | | EfficientNetB7 | 600 | 25.91 | 71.23 | 128.20 | | EfficientNetB0_
small | 224 | 1.24 | 2.59 | 3.92 | **备注:** 精度类型为 FP32,推理过程使用 TensorRT。 #### 1.3.2 基于 T4 GPU 的预测速度 | Models | Size | Latency(ms)
FP16
bs=1 | Latency(ms)
FP16
bs=4 | Latency(ms)
FP16
bs=8 | Latency(ms)
FP32
bs=1 | Latency(ms)
FP32
bs=4 | Latency(ms)
FP32
bs=8 | |:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:| | EfficientNetB0 | 224 | 3.40122 | 5.95851 | 9.10801 | 3.442 | 6.11476 | 9.3304 | | EfficientNetB1 | 240 | 5.25172 | 9.10233 | 14.11319 | 5.3322 | 9.41795 | 14.60388 | | EfficientNetB2 | 260 | 5.91052 | 10.5898 | 17.38106 | 6.29351 | 10.95702 | 17.75308 | | EfficientNetB3 | 300 | 7.69582 | 16.02548 | 27.4447 | 7.67749 | 16.53288 | 28.5939 | | EfficientNetB4 | 380 | 11.55585 | 29.44261 | 53.97363 | 12.15894 | 30.94567 | 57.38511 | | EfficientNetB5 | 456 | 19.63083 | 56.52299 | - | 20.48571 | 61.60252 | - | | EfficientNetB6 | 528 | 30.05911 | - | - | 32.62402 | - | - | | EfficientNetB7 | 600 | 47.86087 | - | - | 53.93823 | - | - | | EfficientNetB0_small | 224 | 2.39166 | 4.36748 | 6.96002 | 2.3076 | 4.71886 | 7.21888 | **备注:** 推理过程使用 TensorRT。 ## 2. 模型快速体验 安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)。 ## 3. 模型训练、评估和预测 此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/EfficientNet/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。 ## 4. 模型推理部署 ### 4.1 推理模型准备 Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。 Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备) 。 ### 4.2 基于 Python 预测引擎推理 PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 。 ### 4.3 基于 C++ 预测引擎推理 PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。 ### 4.4 服务化部署 Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。 PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。 ### 4.5 端侧部署 Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。 PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。 ### 4.6 Paddle2ONNX 模型转换与预测 Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。 PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。