# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) from tools.infer.utils import parse_args, get_image_list, preprocess, np_to_b64 from ppcls.utils import logger import numpy as np import cv2 import time import requests import json import base64 def main(args): image_path_list = get_image_list(args.image_file) headers = {"Content-type": "application/json"} cnt = 0 predict_time = 0 all_score = 0.0 start_time = time.time() batch_input_list = [] img_name_list = [] cnt = 0 for idx, img_path in enumerate(image_path_list): img = cv2.imread(img_path) if img is None: logger.warning( "Image file failed to read and has been skipped. The path: {}". format(img_path)) continue else: img = img[:, :, ::-1] data = preprocess(img, args) batch_input_list.append(data) img_name = img_path.split('/')[-1] img_name_list.append(img_name) cnt += 1 if cnt % args.batch_size == 0 or (idx + 1) == len(image_path_list): batch_input = np.array(batch_input_list) b64str, revert_shape = np_to_b64(batch_input) data = { "images": b64str, "revert_params": { "shape": revert_shape, "dtype": str(batch_input.dtype) }, "top_k": args.top_k } try: r = requests.post( url=args.server_url, headers=headers, data=json.dumps(data)) r.raise_for_status if r.json()["status"] != "000": msg = r.json()["msg"] raise Exception(msg) except Exception as e: logger.error("{}, in file(s): {} etc.".format(e, img_name_list[ 0])) continue else: results = r.json()["results"] batch_result_list = results["prediction"] elapse = results["elapse"] cnt += len(batch_result_list) predict_time += elapse for number, result_list in enumerate(batch_result_list): all_score += result_list["scores"][0] result_str = "" for i in range(len(result_list["clas_ids"])): result_str += "{}: {:.2f}\t".format( result_list["clas_ids"][i], result_list["scores"][i]) logger.info("File:{}, The top-{} result(s): {}".format( img_name_list[number], args.top_k, result_str)) finally: batch_input_list = [] img_name_list = [] total_time = time.time() - start_time logger.info("The average time of prediction cost: {:.3f} s/image".format( predict_time / cnt)) logger.info("The average time cost: {:.3f} s/image".format(total_time / cnt)) logger.info("The average top-1 score: {:.3f}".format(all_score / cnt)) if __name__ == '__main__': args = parse_args() main(args)