# DPN与DenseNet系列 ## 概述 正在持续更新中...... 该系列模型的FLOPS、参数量以及FP32预测耗时如下图所示。 ![](../../images/models/DPN.png.flops.png) ![](../../images/models/DPN.png.params.png) ![](../../images/models/DPN.png.fp32.png) 所有模型在预测时,图像的crop_size设置为224,resize_short_size设置为256。 ## 精度、FLOPS和参数量 | Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPS
(G) | Parameters
(M) | |:--:|:--:|:--:|:--:|:--:|:--:|:--:| | DenseNet121 | 0.757 | 0.926 | 0.750 | | 5.690 | 7.980 | | DenseNet161 | 0.786 | 0.941 | 0.778 | | 15.490 | 28.680 | | DenseNet169 | 0.768 | 0.933 | 0.764 | | 6.740 | 14.150 | | DenseNet201 | 0.776 | 0.937 | 0.775 | | 8.610 | 20.010 | | DenseNet264 | 0.780 | 0.939 | 0.779 | | 11.540 | 33.370 | | DPN68 | 0.768 | 0.934 | 0.764 | 0.931 | 4.030 | 10.780 | | DPN92 | 0.799 | 0.948 | 0.793 | 0.946 | 12.540 | 36.290 | | DPN98 | 0.806 | 0.951 | 0.799 | 0.949 | 22.220 | 58.460 | | DPN107 | 0.809 | 0.953 | 0.802 | 0.951 | 35.060 | 82.970 | | DPN131 | 0.807 | 0.951 | 0.801 | 0.949 | 30.510 | 75.360 | ## FP32预测速度 | Models | Crop Size | Resize Short Size | Batch Size=1
(ms) | |-------------|-----------|-------------------|--------------------------| | DenseNet121 | 224 | 256 | 4.371 | | DenseNet161 | 224 | 256 | 8.863 | | DenseNet169 | 224 | 256 | 6.391 | | DenseNet201 | 224 | 256 | 8.173 | | DenseNet264 | 224 | 256 | 11.942 | | DPN68 | 224 | 256 | 11.805 | | DPN92 | 224 | 256 | 17.840 | | DPN98 | 224 | 256 | 21.057 | | DPN107 | 224 | 256 | 28.685 | | DPN131 | 224 | 256 | 28.083 |