# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import os import sys import argparse import functools from functools import partial import math from tqdm import tqdm import numpy as np import paddle import paddleslim from paddle.jit import to_static from paddleslim.analysis import dygraph_flops as flops __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.abspath(os.path.join(__dir__, '../../'))) from paddleslim.auto_compression import AutoCompression from ppcls.data import build_dataloader from ppcls.utils import config as conf from ppcls.utils.logger import init_logger def reader_wrapper(reader, input_name): def gen(): for i, (imgs, label) in enumerate(reader()): yield {input_name: imgs} return gen def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list): results = [] with tqdm( total=len(val_loader), bar_format='Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}', ncols=80) as t: for batch_id, (image, label) in enumerate(val_loader): # top1_acc, top5_acc if len(test_feed_names) == 1: image = np.array(image) label = np.array(label).astype('int64') pred = exe.run(compiled_test_program, feed={test_feed_names[0]: image}, fetch_list=test_fetch_list) pred = np.array(pred[0]) label = np.array(label).reshape((-1, 1)) sort_array = pred.argsort(axis=1) top_1_pred = sort_array[:, -1:][:, ::-1] top_1 = np.mean(label == top_1_pred) top_5_pred = sort_array[:, -5:][:, ::-1] acc_num = 0 for i in range(len(label)): if label[i][0] in top_5_pred[i]: acc_num += 1 top_5 = float(acc_num) / len(label) results.append([top_1, top_5]) else: # eval "eval model", which inputs are image and label, output is top1 and top5 accuracy image = np.array(image) label = np.array(label).astype('int64') result = exe.run(compiled_test_program, feed={ test_feed_names[0]: image, test_feed_names[1]: label }, fetch_list=test_fetch_list) result = [np.mean(r) for r in result] results.append(result) t.update() result = np.mean(np.array(results), axis=0) return result[0] def main(): args = conf.parse_args() global config config = conf.get_config(args.config, overrides=args.override, show=False) assert os.path.exists( os.path.join(config["Global"]["model_dir"], 'inference.pdmodel') ) and os.path.exists( os.path.join(config["Global"]["model_dir"], 'inference.pdiparams')) if "Query" in config["DataLoader"]["Eval"]: config["DataLoader"]["Eval"] = config["DataLoader"]["Eval"]["Query"] init_logger() train_dataloader = build_dataloader(config["DataLoader"], "Train", config["Global"]['device'], False) if isinstance(config['TrainConfig']['learning_rate'], dict) and config[ 'TrainConfig']['learning_rate']['type'] == 'CosineAnnealingDecay': gpu_num = paddle.distributed.get_world_size() step = len(train_dataloader) config['TrainConfig']['learning_rate']['T_max'] = step print('total training steps:', step) global val_loader val_loader = build_dataloader(config["DataLoader"], "Eval", config["Global"]['device'], False) if config["Global"]['device'] == 'gpu': rank_id = paddle.distributed.get_rank() place = paddle.CUDAPlace(rank_id) paddle.set_device('gpu') else: place = paddle.CPUPlace() paddle.set_device('cpu') ac = AutoCompression( model_dir=config["Global"]["model_dir"], model_filename=config["Global"]["model_filename"], params_filename=config["Global"]["params_filename"], save_dir=config["Global"]['output_dir'], config=config, train_dataloader=reader_wrapper( train_dataloader, input_name=config['Global']['input_name']), eval_callback=eval_function if rank_id == 0 else None, eval_dataloader=reader_wrapper( val_loader, input_name=config['Global']['input_name'])) ac.compress() if __name__ == '__main__': paddle.enable_static() main()