# global configs Global: checkpoints: null pretrained_model: null output_dir: "./output/" device: "gpu" save_interval: 1 eval_during_train: True eval_interval: 1 epochs: 120 print_batch_step: 10 use_visualdl: False # used for static mode and model export image_shape: [3, 224, 224] save_inference_dir: "./inference" eval_mode: "retrieval" # model architecture Arch: name: "RecModel" infer_output_key: "features" infer_add_softmax: False Backbone: name: "ResNet50_last_stage_stride1" pretrained: True BackboneStopLayer: name: "adaptive_avg_pool2d_0" Neck: name: "VehicleNeck" in_channels: 2048 out_channels: 512 Head: name: "CircleMargin" margin: 0.35 scale: 64 embedding_size: 512 class_num: 3000 # loss function config for traing/eval process Loss: Train: - CELoss: weight: 1.0 - PairwiseCosface: margin: 0.35 gamma: 64 weight: 1.0 Eval: - CELoss: weight: 1.0 Optimizer: name: Momentum momentum: 0.9 lr: name: Cosine learning_rate: 0.04 regularizer: name: 'L2' coeff: 0.0001 # data loader for train and eval DataLoader: Train: dataset: name: LogoDataset image_root: "dataset/LogoDet-3K-crop/train/" cls_label_path: "dataset/LogoDet-3K-crop/LogoDet-3K+train.txt" transform_ops: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: size: 224 - RandFlipImage: flip_code: 1 - AugMix: prob: 0.5 - NormalizeImage: scale: 0.00392157 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - RandomErasing: EPSILON: 0.5 sampler: name: PKSampler batch_size: 128 sample_per_id: 2 drop_last: True loader: num_workers: 6 use_shared_memory: True Eval: Query: dataset: name: LogoDataset image_root: "dataset/LogoDet-3K-crop/val/" cls_label_path: "dataset/LogoDet-3K-crop/LogoDet-3K+val.txt" transform_ops: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: size: 224 - NormalizeImage: scale: 0.00392157 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 128 drop_last: False shuffle: False loader: num_workers: 8 use_shared_memory: True Gallery: dataset: name: LogoDataset image_root: "dataset/LogoDet-3K-crop/train/" cls_label_path: "dataset/LogoDet-3K-crop/LogoDet-3K+train.txt" transform_ops: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: size: 224 - NormalizeImage: scale: 0.00392157 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 128 drop_last: False shuffle: False loader: num_workers: 8 use_shared_memory: True Metric: Eval: - Recallk: topk: [1, 5] - mAP: {}