# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.regularizer import L2Decay from .vision_transformer import trunc_normal_, normal_, zeros_, ones_, to_2tuple, DropPath, Identity, Mlp from .vision_transformer import Block as ViTBlock from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url MODEL_URLS = { "pcpvt_small": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams", "pcpvt_base": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams", "pcpvt_large": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams", "alt_gvt_small": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams", "alt_gvt_base": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams", "alt_gvt_large": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams" } __all__ = list(MODEL_URLS.keys()) class GroupAttention(nn.Layer): """LSA: self attention within a group. """ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., ws=1): super().__init__() if ws == 1: raise Exception(f"ws {ws} should not be 1") if dim % num_heads != 0: raise Exception( f"dim {dim} should be divided by num_heads {num_heads}.") self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.ws = ws def forward(self, x, H, W): B, N, C = x.shape h_group, w_group = H // self.ws, W // self.ws total_groups = h_group * w_group x = x.reshape([B, h_group, self.ws, w_group, self.ws, C]).transpose( [0, 1, 3, 2, 4, 5]) qkv = self.qkv(x).reshape([ B, total_groups, self.ws**2, 3, self.num_heads, C // self.num_heads ]).transpose([3, 0, 1, 4, 2, 5]) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @k.transpose([0, 1, 2, 4, 3])) * self.scale attn = nn.Softmax(axis=-1)(attn) attn = self.attn_drop(attn) attn = (attn @v).transpose([0, 1, 3, 2, 4]).reshape( [B, h_group, w_group, self.ws, self.ws, C]) x = attn.transpose([0, 1, 3, 2, 4, 5]).reshape([B, N, C]) x = self.proj(x) x = self.proj_drop(x) return x class Attention(nn.Layer): """GSA: using a key to summarize the information for a group to be efficient. """ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1): super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 self.q = nn.Linear(dim, dim, bias_attr=qkv_bias) self.kv = nn.Linear(dim, dim * 2, bias_attr=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.sr_ratio = sr_ratio if sr_ratio > 1: self.sr = nn.Conv2D( dim, dim, kernel_size=sr_ratio, stride=sr_ratio) self.norm = nn.LayerNorm(dim) def forward(self, x, H, W): B, N, C = x.shape q = self.q(x).reshape( [B, N, self.num_heads, C // self.num_heads]).transpose( [0, 2, 1, 3]) if self.sr_ratio > 1: x_ = x.transpose([0, 2, 1]).reshape([B, C, H, W]) tmp_n = H * W // self.sr_ratio**2 x_ = self.sr(x_).reshape([B, C, tmp_n]).transpose([0, 2, 1]) x_ = self.norm(x_) kv = self.kv(x_).reshape( [B, tmp_n, 2, self.num_heads, C // self.num_heads]).transpose( [2, 0, 3, 1, 4]) else: kv = self.kv(x).reshape( [B, N, 2, self.num_heads, C // self.num_heads]).transpose( [2, 0, 3, 1, 4]) k, v = kv[0], kv[1] attn = (q @k.transpose([0, 1, 3, 2])) * self.scale attn = nn.Softmax(axis=-1)(attn) attn = self.attn_drop(attn) x = (attn @v).transpose([0, 2, 1, 3]).reshape([B, N, C]) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Layer): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, H, W): x = x + self.drop_path(self.attn(self.norm1(x), H, W)) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class SBlock(ViTBlock): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1): super().__init__(dim, num_heads, mlp_ratio, qkv_bias, qk_scale, drop, attn_drop, drop_path, act_layer, norm_layer) def forward(self, x, H, W): return super().forward(x) class GroupBlock(ViTBlock): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, ws=1): super().__init__(dim, num_heads, mlp_ratio, qkv_bias, qk_scale, drop, attn_drop, drop_path, act_layer, norm_layer) del self.attn if ws == 1: self.attn = Attention(dim, num_heads, qkv_bias, qk_scale, attn_drop, drop, sr_ratio) else: self.attn = GroupAttention(dim, num_heads, qkv_bias, qk_scale, attn_drop, drop, ws) def forward(self, x, H, W): x = x + self.drop_path(self.attn(self.norm1(x), H, W)) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Layer): """ Image to Patch Embedding. """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() if img_size % patch_size != 0: raise Exception( f"img_size {img_size} should be divided by patch_size {patch_size}." ) img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.H, self.W = img_size[0] // patch_size[0], img_size[ 1] // patch_size[1] self.num_patches = self.H * self.W self.proj = nn.Conv2D( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) self.norm = nn.LayerNorm(embed_dim) def forward(self, x): B, C, H, W = x.shape x = self.proj(x).flatten(2).transpose([0, 2, 1]) x = self.norm(x) H, W = H // self.patch_size[0], W // self.patch_size[1] return x, (H, W) # borrow from PVT https://github.com/whai362/PVT.git class PyramidVisionTransformer(nn.Layer): def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512], num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], block_cls=Block): super().__init__() self.num_classes = num_classes self.depths = depths # patch_embed self.patch_embeds = nn.LayerList() self.pos_embeds = nn.ParameterList() self.pos_drops = nn.LayerList() self.blocks = nn.LayerList() for i in range(len(depths)): if i == 0: self.patch_embeds.append( PatchEmbed(img_size, patch_size, in_chans, embed_dims[i])) else: self.patch_embeds.append( PatchEmbed(img_size // patch_size // 2**(i - 1), 2, embed_dims[i - 1], embed_dims[i])) patch_num = self.patch_embeds[i].num_patches + 1 if i == len( embed_dims) - 1 else self.patch_embeds[i].num_patches self.pos_embeds.append( self.create_parameter( shape=[1, patch_num, embed_dims[i]], default_initializer=zeros_)) self.pos_drops.append(nn.Dropout(p=drop_rate)) dpr = [ x.numpy()[0] for x in paddle.linspace(0, drop_path_rate, sum(depths)) ] # stochastic depth decay rule cur = 0 for k in range(len(depths)): _block = nn.LayerList([ block_cls( dim=embed_dims[k], num_heads=num_heads[k], mlp_ratio=mlp_ratios[k], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[k]) for i in range(depths[k]) ]) self.blocks.append(_block) cur += depths[k] self.norm = norm_layer(embed_dims[-1]) # cls_token self.cls_token = self.create_parameter( shape=[1, 1, embed_dims[-1]], default_initializer=zeros_, attr=paddle.ParamAttr(regularizer=L2Decay(0.0))) # classification head self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else Identity() # init weights for pos_emb in self.pos_embeds: trunc_normal_(pos_emb) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: zeros_(m.bias) elif isinstance(m, nn.LayerNorm): zeros_(m.bias) ones_(m.weight) def forward_features(self, x): B = x.shape[0] for i in range(len(self.depths)): x, (H, W) = self.patch_embeds[i](x) if i == len(self.depths) - 1: cls_tokens = self.cls_token.expand([B, -1, -1]) x = paddle.concat([cls_tokens, x], dim=1) x = x + self.pos_embeds[i] x = self.pos_drops[i](x) for blk in self.blocks[i]: x = blk(x, H, W) if i < len(self.depths) - 1: x = x.reshape([B, H, W, -1]).transpose( [0, 3, 1, 2]).contiguous() x = self.norm(x) return x[:, 0] def forward(self, x): x = self.forward_features(x) x = self.head(x) return x # PEG from https://arxiv.org/abs/2102.10882 class PosCNN(nn.Layer): def __init__(self, in_chans, embed_dim=768, s=1): super().__init__() self.proj = nn.Sequential( nn.Conv2D( in_chans, embed_dim, 3, s, 1, bias_attr=paddle.ParamAttr(regularizer=L2Decay(0.0)), groups=embed_dim, weight_attr=paddle.ParamAttr(regularizer=L2Decay(0.0)), )) self.s = s def forward(self, x, H, W): B, N, C = x.shape feat_token = x cnn_feat = feat_token.transpose([0, 2, 1]).reshape([B, C, H, W]) if self.s == 1: x = self.proj(cnn_feat) + cnn_feat else: x = self.proj(cnn_feat) x = x.flatten(2).transpose([0, 2, 1]) return x class CPVTV2(PyramidVisionTransformer): """ Use useful results from CPVT. PEG and GAP. Therefore, cls token is no longer required. PEG is used to encode the absolute position on the fly, which greatly affects the performance when input resolution changes during the training (such as segmentation, detection) """ def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512], num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], block_cls=Block): super().__init__(img_size, patch_size, in_chans, num_classes, embed_dims, num_heads, mlp_ratios, qkv_bias, qk_scale, drop_rate, attn_drop_rate, drop_path_rate, norm_layer, depths, sr_ratios, block_cls) del self.pos_embeds del self.cls_token self.pos_block = nn.LayerList( [PosCNN(embed_dim, embed_dim) for embed_dim in embed_dims]) self.apply(self._init_weights) def _init_weights(self, m): import math if isinstance(m, nn.Linear): trunc_normal_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: zeros_(m.bias) elif isinstance(m, nn.LayerNorm): zeros_(m.bias) ones_(m.weight) elif isinstance(m, nn.Conv2D): fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels fan_out //= m._groups normal_(0, math.sqrt(2.0 / fan_out))(m.weight) if m.bias is not None: zeros_(m.bias) elif isinstance(m, nn.BatchNorm2D): m.weight.data.fill_(1.0) m.bias.data.zero_() def forward_features(self, x): B = x.shape[0] for i in range(len(self.depths)): x, (H, W) = self.patch_embeds[i](x) x = self.pos_drops[i](x) for j, blk in enumerate(self.blocks[i]): x = blk(x, H, W) if j == 0: x = self.pos_block[i](x, H, W) # PEG here if i < len(self.depths) - 1: x = x.reshape([B, H, W, x.shape[-1]]).transpose([0, 3, 1, 2]) x = self.norm(x) return x.mean(axis=1) # GAP here class PCPVT(CPVTV2): def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256], num_heads=[1, 2, 4], mlp_ratios=[4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, depths=[4, 4, 4], sr_ratios=[4, 2, 1], block_cls=SBlock): super().__init__(img_size, patch_size, in_chans, num_classes, embed_dims, num_heads, mlp_ratios, qkv_bias, qk_scale, drop_rate, attn_drop_rate, drop_path_rate, norm_layer, depths, sr_ratios, block_cls) class ALTGVT(PCPVT): """ alias Twins-SVT """ def __init__(self, img_size=224, patch_size=4, in_chans=3, class_num=1000, embed_dims=[64, 128, 256], num_heads=[1, 2, 4], mlp_ratios=[4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, depths=[4, 4, 4], sr_ratios=[4, 2, 1], block_cls=GroupBlock, wss=[7, 7, 7]): super().__init__(img_size, patch_size, in_chans, class_num, embed_dims, num_heads, mlp_ratios, qkv_bias, qk_scale, drop_rate, attn_drop_rate, drop_path_rate, norm_layer, depths, sr_ratios, block_cls) del self.blocks self.wss = wss # transformer encoder dpr = [ x.numpy()[0] for x in paddle.linspace(0, drop_path_rate, sum(depths)) ] # stochastic depth decay rule cur = 0 self.blocks = nn.LayerList() for k in range(len(depths)): _block = nn.LayerList([ block_cls( dim=embed_dims[k], num_heads=num_heads[k], mlp_ratio=mlp_ratios[k], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[k], ws=1 if i % 2 == 1 else wss[k]) for i in range(depths[k]) ]) self.blocks.append(_block) cur += depths[k] self.apply(self._init_weights) def _load_pretrained(pretrained, model, model_url, use_ssld=False): if pretrained is False: pass elif pretrained is True: load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) elif isinstance(pretrained, str): load_dygraph_pretrain(model, pretrained) else: raise RuntimeError( "pretrained type is not available. Please use `string` or `boolean` type." ) def pcpvt_small(pretrained=False, use_ssld=False, **kwargs): model = CPVTV2( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["pcpvt_small"], use_ssld=use_ssld) return model def pcpvt_base(pretrained=False, use_ssld=False, **kwargs): model = CPVTV2( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["pcpvt_base"], use_ssld=use_ssld) return model def pcpvt_large(pretrained=False, use_ssld=False, **kwargs): model = CPVTV2( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["pcpvt_large"], use_ssld=use_ssld) return model def alt_gvt_small(pretrained=False, use_ssld=False, **kwargs): model = ALTGVT( patch_size=4, embed_dims=[64, 128, 256, 512], num_heads=[2, 4, 8, 16], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[2, 2, 10, 4], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["alt_gvt_small"], use_ssld=use_ssld) return model def alt_gvt_base(pretrained=False, use_ssld=False, **kwargs): model = ALTGVT( patch_size=4, embed_dims=[96, 192, 384, 768], num_heads=[3, 6, 12, 24], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["alt_gvt_base"], use_ssld=use_ssld) return model def alt_gvt_large(pretrained=False, use_ssld=False, **kwargs): model = ALTGVT( patch_size=4, embed_dims=[128, 256, 512, 1024], num_heads=[4, 8, 16, 32], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["alt_gvt_large"], use_ssld=use_ssld) return model