# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle import paddle.nn as nn import paddle.nn.functional as F class PairwiseCosface(nn.Layer): def __init__(self, margin, gamma): super(PairwiseCosface, self).__init__() self.margin = margin self.gamma = gamma def forward(self, embedding, targets): if isinstance(embedding, dict): embedding = embedding['features'] # Normalize embedding features embedding = F.normalize(embedding, axis=1) dist_mat = paddle.matmul(embedding, embedding, transpose_y=True) N = dist_mat.shape[0] is_pos = targets.reshape([N,1]).expand([N,N]).equal(paddle.t(targets.reshape([N,1]).expand([N,N]))).astype('float') is_neg = targets.reshape([N,1]).expand([N,N]).not_equal(paddle.t(targets.reshape([N,1]).expand([N,N]))).astype('float') # Mask scores related to itself is_pos = is_pos - paddle.eye(N, N) s_p = dist_mat * is_pos s_n = dist_mat * is_neg logit_p = -self.gamma * s_p + (-99999999.) * (1 - is_pos) logit_n = self.gamma * (s_n + self.margin) + (-99999999.) * (1 - is_neg) loss = F.softplus(paddle.logsumexp(logit_p, axis=1) + paddle.logsumexp(logit_n, axis=1)).mean() return {"PairwiseCosface": loss}