# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.abspath(os.path.join(__dir__, '../'))) import cv2 import numpy as np from utils import logger from utils import config from utils.predictor import Predictor from utils.get_image_list import get_image_list from preprocess import create_operators from postprocess import build_postprocess class ClsPredictor(object): def __init__(self, config): super().__init__() self.predictor = Predictor(config["Global"]) self.preprocess_ops = create_operators(config["PreProcess"][ "transform_ops"]) self.postprocess = build_postprocess(config["PostProcess"]) def main(config): cls_predictor = ClsPredictor(config) image_list = get_image_list(config["Global"]["infer_imgs"]) assert config["Global"]["batch_size"] == 1 for idx, image_file in enumerate(image_list): batch_input = [] img = cv2.imread(image_file)[:, :, ::-1] for ops in cls_predictor.preprocess_ops: img = ops(img) batch_input.append(img) output = cls_predictor.predictor.predict(np.array(batch_input)) output = cls_predictor.postprocess(output) print(output) return if __name__ == "__main__": args = config.parse_args() config = config.get_config(args.config, overrides=args.override, show=True) main(config)