# MobileViTv2 ----- ## 目录 - [1. 模型介绍](#1) - [1.1 模型简介](#1.1) - [1.2 模型指标](#1.2) - [2. 模型快速体验](#2) - [3. 模型训练、评估和预测](#3) - [4. 模型推理部署](#4) - [4.1 推理模型准备](#4.1) - [4.2 基于 Python 预测引擎推理](#4.2) - [4.3 基于 C++ 预测引擎推理](#4.3) - [4.4 服务化部署](#4.4) - [4.5 端侧部署](#4.5) - [4.6 Paddle2ONNX 模型转换与预测](#4.6) ## 1. 模型介绍 ### 1.1 模型简介 MobileViTv2 是一个结合 CNN 和 ViT 的轻量级模型,用于移动视觉任务。通过 MobileViTv2-block 解决了 MobileViTv1 的扩展问题并简化了学习任务,从而得倒了 MobileViTv2-XXS、XS 和 S 模型,在 ImageNet-1k、ADE20K、COCO 和 PascalVOC2012 数据集上表现优于 MobileViTv1。 通过将提出的融合块添加到 MobileViTv2 中,创建 MobileViTv2-0.5、0.75 和 1.0 模型,在ImageNet-1k、ADE20K、COCO和PascalVOC2012数据集上给出了比 MobileViTv2 更好的准确性数据。[论文地址](https://arxiv.org/abs/2209.15159)。 ### 1.2 模型指标 | Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPs
(G) | Params
(M) | |:--:|:--:|:--:|:--:|:--:|:--:|:--:| | MobileViTv2_x0_5 | 0.7017 | 0.89884 | 0.7018 | - | 480.46 | 1.37 | | MobileViTv2_x1_0 | 0.7813 | 0.94172 | 0.7809 | - | 1843.81 | 4.90 | | MobileViTv2_x1_5 | 0.8034 | 0.95094 | 0.8038 | - | 4090.07 | 10.60 | | MobileViTv2_x2_0 | 0.8116 | 0.95370 | 0.8117 | - | 7219.23 | 18.45 | **备注:** PaddleClas 所提供的该系列模型的预训练模型权重,均是基于其官方提供的权重转得。 ## 2. 模型快速体验 安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2)。 ## 3. 模型训练、评估和预测 此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/MobileViTv2/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。 **备注:** 由于 MobileViT 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。 ## 4. 模型推理部署 ### 4.1 推理模型准备 Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。 Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#4.1) 。 ### 4.2 基于 Python 预测引擎推理 PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#4.2) 完成模型的推理预测。 ### 4.3 基于 C++ 预测引擎推理 PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。 ### 4.4 服务化部署 Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。 PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。 ### 4.5 端侧部署 Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。 PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。 ### 4.6 Paddle2ONNX 模型转换与预测 Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。 PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。