#!/bin/bash FILENAME=$1 # MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer', # 'whole_infer', 'klquant_whole_infer', # 'cpp_infer', 'serving_infer', 'lite_infer'] MODE=$2 dataline=$(cat ${FILENAME}) # parser params IFS=$'\n' lines=(${dataline}) function func_parser_key() { strs=$1 IFS=":" array=(${strs}) tmp=${array[0]} echo ${tmp} } function func_parser_value() { strs=$1 IFS=":" array=(${strs}) if [ ${#array[*]} = 2 ]; then echo ${array[1]} else IFS="|" tmp="${array[1]}:${array[2]}" echo ${tmp} fi } function func_get_url_file_name() { strs=$1 IFS="/" array=(${strs}) tmp=${array[${#array[@]} - 1]} echo ${tmp} } model_name=$(func_parser_value "${lines[1]}") if [ ${MODE} = "cpp_infer" ]; then if [ -d "./deploy/cpp/opencv-3.4.7/opencv3/" ] && [ $(md5sum ./deploy/cpp/opencv-3.4.7.tar.gz | awk -F ' ' '{print $1}') = "faa2b5950f8bee3f03118e600c74746a" ]; then echo "################### build opencv skipped ###################" else echo "################### build opencv ###################" rm -rf ./deploy/cpp/opencv-3.4.7.tar.gz ./deploy/cpp/opencv-3.4.7/ pushd ./deploy/cpp/ wget -nc https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/opencv-3.4.7.tar.gz tar -xf opencv-3.4.7.tar.gz cd opencv-3.4.7/ install_path=$(pwd)/opencv3 rm -rf build mkdir build cd build cmake .. \ -DCMAKE_INSTALL_PREFIX=${install_path} \ -DCMAKE_BUILD_TYPE=Release \ -DBUILD_SHARED_LIBS=OFF \ -DWITH_IPP=OFF \ -DBUILD_IPP_IW=OFF \ -DWITH_LAPACK=OFF \ -DWITH_EIGEN=OFF \ -DCMAKE_INSTALL_LIBDIR=lib64 \ -DWITH_ZLIB=ON \ -DBUILD_ZLIB=ON \ -DWITH_JPEG=ON \ -DBUILD_JPEG=ON \ -DWITH_PNG=ON \ -DBUILD_PNG=ON \ -DWITH_TIFF=ON \ -DBUILD_TIFF=ON make -j make install cd ../../ popd echo "################### build opencv finished ###################" fi if [[ $FILENAME == *infer_cpp_linux_gpu_cpu.txt ]]; then cpp_type=$(func_parser_value "${lines[2]}") cls_inference_model_dir=$(func_parser_value "${lines[3]}") det_inference_model_dir=$(func_parser_value "${lines[4]}") cls_inference_url=$(func_parser_value "${lines[5]}") det_inference_url=$(func_parser_value "${lines[6]}") if [[ $cpp_type == "cls" ]]; then eval "wget -nc $cls_inference_url" tar xf "${model_name}_infer.tar" eval "mv ${model_name}_infer $cls_inference_model_dir" cd dataset rm -rf ILSVRC2012 wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_infer.tar tar xf whole_chain_infer.tar ln -s whole_chain_infer ILSVRC2012 cd .. elif [[ $cpp_type == "shitu" ]]; then eval "wget -nc $cls_inference_url" tar_name=$(func_get_url_file_name "$cls_inference_url") model_dir=${tar_name%.*} eval "tar xf ${tar_name}" eval "mv ${model_dir}_infer ${cls_inference_model_dir}" eval "wget -nc $det_inference_url" tar_name=$(func_get_url_file_name "$det_inference_url") model_dir=${tar_name%.*} eval "tar xf ${tar_name}" eval "mv ${model_dir}_infer ${det_inference_model_dir}" cd dataset wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar tar -xf drink_dataset_v1.0.tar else echo "Wrong cpp type in config file in line 3. only support cls, shitu" fi exit 0 else echo "use wrong config file" exit 1 fi fi model_name=$(func_parser_value "${lines[1]}") model_url_value=$(func_parser_value "${lines[35]}") model_url_key=$(func_parser_key "${lines[35]}") if [[ $FILENAME == *GeneralRecognition* ]]; then cd dataset rm -rf Aliproduct rm -rf train_reg_all_data.txt rm -rf demo_train wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/tipc_shitu_demo_data.tar tar -xf tipc_shitu_demo_data.tar ln -s tipc_shitu_demo_data Aliproduct ln -s tipc_shitu_demo_data/demo_train.txt train_reg_all_data.txt ln -s tipc_shitu_demo_data/demo_train demo_train cd tipc_shitu_demo_data ln -s demo_test.txt val_list.txt cd ../../ eval "wget -nc $model_url_value" mv general_PPLCNet_x2_5_pretrained_v1.0.pdparams GeneralRecognition_PPLCNet_x2_5_pretrained.pdparams exit 0 fi if [[ $FILENAME == *use_dali* ]]; then python_name=$(func_parser_value "${lines[2]}") ${python_name} -m pip install --extra-index-url https://developer.download.nvidia.com/compute/redist/nightly --upgrade nvidia-dali-nightly-cuda102 fi if [ ${MODE} = "lite_train_lite_infer" ] || [ ${MODE} = "lite_train_whole_infer" ]; then # pretrain lite train data cd dataset rm -rf ILSVRC2012 wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_little_train.tar tar xf whole_chain_little_train.tar ln -s whole_chain_little_train ILSVRC2012 cd ILSVRC2012 mv train.txt train_list.txt mv val.txt val_list.txt cp -r train/* val/ cd ../../ elif [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then # download data cd dataset rm -rf ILSVRC2012 wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_infer.tar tar xf whole_chain_infer.tar ln -s whole_chain_infer ILSVRC2012 cd ILSVRC2012 mv val.txt val_list.txt ln -s val_list.txt train_list.txt cd ../../ # download inference or pretrained model eval "wget -nc $model_url_value" if [[ $model_url_key == *inference* ]]; then rm -rf inference tar xf "${model_name}_infer.tar" fi if [[ $model_name == "SwinTransformer_large_patch4_window7_224" || $model_name == "SwinTransformer_large_patch4_window12_384" ]]; then cmd="mv ${model_name}_22kto1k_pretrained.pdparams ${model_name}_pretrained.pdparams" eval $cmd fi elif [ ${MODE} = "whole_train_whole_infer" ]; then cd dataset rm -rf ILSVRC2012 wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_CIFAR100.tar tar xf whole_chain_CIFAR100.tar ln -s whole_chain_CIFAR100 ILSVRC2012 cd ILSVRC2012 mv train.txt train_list.txt mv test.txt val_list.txt cd ../../ fi if [ ${MODE} = "serving_infer" ]; then # prepare serving env python_name=$(func_parser_value "${lines[2]}") ${python_name} -m pip install install paddle-serving-server-gpu==0.6.1.post101 ${python_name} -m pip install paddle_serving_client==0.6.1 ${python_name} -m pip install paddle-serving-app==0.6.1 unset http_proxy unset https_proxy cd ./deploy/paddleserving wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar && tar xf ResNet50_vd_infer.tar fi if [ ${MODE} = "paddle2onnx_infer" ]; then # prepare paddle2onnx env python_name=$(func_parser_value "${lines[2]}") ${python_name} -m pip install install paddle2onnx ${python_name} -m pip install onnxruntime # wget model cd deploy && mkdir models && cd models wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar && tar xf ResNet50_vd_infer.tar cd ../../ fi if [ ${MODE} = "benchmark_train" ]; then pip install -r requirements.txt cd dataset rm -rf ILSVRC2012 wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/ImageNet1k/ILSVRC2012_val.tar tar xf ILSVRC2012_val.tar ln -s ILSVRC2012_val ILSVRC2012 cd ILSVRC2012 ln -s val_list.txt train_list.txt cd ../../ fi