# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import utils import argparse import numpy as np import paddle.fluid as fluid from ppcls.modeling import architectures def parse_args(): def str2bool(v): return v.lower() in ("true", "t", "1") parser = argparse.ArgumentParser() parser.add_argument("-i", "--image_file", type=str) parser.add_argument("-m", "--model", type=str) parser.add_argument("-p", "--pretrained_model", type=str) parser.add_argument("--use_gpu", type=str2bool, default=True) return parser.parse_args() def create_predictor(args): def create_input(): image = fluid.data( name='image', shape=[None, 3, 224, 224], dtype='float32') return image def create_model(args, model, input, class_dim=1000): if args.model == "GoogLeNet": out, _, _ = model.net(input=input, class_dim=class_dim) else: out = model.net(input=input, class_dim=class_dim) out = fluid.layers.softmax(out) return out model = architectures.__dict__[args.model]() place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) startup_prog = fluid.Program() infer_prog = fluid.Program() with fluid.program_guard(infer_prog, startup_prog): with fluid.unique_name.guard(): image = create_input() out = create_model(args, model, image) infer_prog = infer_prog.clone(for_test=True) fluid.load( program=infer_prog, model_path=args.pretrained_model, executor=exe) return exe, infer_prog, [image.name], [out.name] def create_operators(): size = 224 img_mean = [0.485, 0.456, 0.406] img_std = [0.229, 0.224, 0.225] img_scale = 1.0 / 255.0 decode_op = utils.DecodeImage() resize_op = utils.ResizeImage(resize_short=256) crop_op = utils.CropImage(size=(size, size)) normalize_op = utils.NormalizeImage( scale=img_scale, mean=img_mean, std=img_std) totensor_op = utils.ToTensor() return [decode_op, resize_op, crop_op, normalize_op, totensor_op] def preprocess(fname, ops): data = open(fname).read() for op in ops: data = op(data) return data def postprocess(outputs, topk=5): output = outputs[0] prob = np.array(output).flatten() index = prob.argsort(axis=0)[-topk:][::-1].astype('int32') return zip(index, prob[index]) def main(): args = parse_args() operators = create_operators() exe, program, feed_names, fetch_names = create_predictor(args) data = preprocess(args.image_file, operators) outputs = exe.run(program, feed={feed_names[0]: data}, fetch_list=fetch_names, return_numpy=False) probs = postprocess(outputs) for idx, prob in probs: print("class id: {:d}, probability: {:.4f}".format(idx, prob)) if __name__ == "__main__": main()