#!/usr/bin/env bash # Test training benchmark for a model. # Usage:bash run_benchmark.sh ${model_item} ${bs_item} ${fp_item} ${run_process_type} ${run_mode} ${device_num} function _set_params(){ model_item=${1:-"model_item"} # (必选) 模型 item base_batch_size=${2:-"2"} # (必选) 如果是静态图单进程,则表示每张卡上的BS,需在训练时*卡数 fp_item=${3:-"fp32"} # (必选) fp32|fp16 run_process_type=${4:-"SingleP"} # (必选) 单进程 SingleP|多进程 MultiP run_mode=${5:-"DP"} # (必选) MP模型并行|DP数据并行|PP流水线并行|混合并行DP1-MP1-PP1|DP1-MP4-PP1 device_num=${6:-"N1C1"} # (必选) 使用的卡数量,N1C1|N1C8|N4C32 (4机32卡) profiling=${PROFILING:-"false"} # (必选) Profiling 开关,默认关闭,通过全局变量传递 model_repo="PaddleClas" # (必选) 模型套件的名字 speed_unit="samples/sec" # (必选)速度指标单位 skip_steps=10 # (必选)解析日志,跳过模型前几个性能不稳定的step keyword="ips:" # (必选)解析日志,筛选出性能数据所在行的关键字 convergence_key="loss:" # (可选)解析日志,筛选出收敛数据所在行的关键字 如:convergence_key="loss:" max_epochs=${7:-"1"} # (可选)需保证模型执行时间在5分钟内,需要修改代码提前中断的直接提PR 合入套件;或使用max_epoch参数 num_workers=${8:-"4"} # (可选) # 以下为通用执行命令,无特殊可不用修改 model_name=${model_item}_bs${base_batch_size}_${fp_item}_${run_process_type}_${run_mode} # (必填) 且格式不要改动,与竞品名称对齐 device=${CUDA_VISIBLE_DEVICES//,/ } arr=(${device}) num_gpu_devices=${#arr[*]} run_log_path=${TRAIN_LOG_DIR:-$(pwd)} # (必填) TRAIN_LOG_DIR benchmark框架设置该参数为全局变量 profiling_log_path=${PROFILING_LOG_DIR:-$(pwd)} # (必填) PROFILING_LOG_DIR benchmark框架设置该参数为全局变量 speed_log_path=${LOG_PATH_INDEX_DIR:-$(pwd)} train_log_file=${run_log_path}/${model_repo}_${model_name}_${device_num}_log profiling_log_file=${profiling_log_path}/${model_repo}_${model_name}_${device_num}_profiling speed_log_file=${speed_log_path}/${model_repo}_${model_name}_${device_num}_speed } function _train(){ batch_size=${base_batch_size} # 如果模型跑多卡单进程时,请在_train函数中计算出多卡需要的bs echo "current CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES}, model_name=${model_name}, device_num=${device_num}, is profiling=${profiling}" if [ ${fp_item} = "fp32" ]; then config_file="-c ppcls/configs/ImageNet/ResNet/ResNet50.yaml" else config_file="-c ppcls/configs/ImageNet/ResNet/ResNet50_amp_O1.yaml" fi if [ ${profiling} = "false" ]; then profiling_config="" log_file=${train_log_file} else profiling_config="--profiler_options=\"batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile\"" log_file=${profiling_log_file} fi train_cmd="${config_file} -o DataLoader.Train.sampler.batch_size=${base_batch_size} -o Global.epochs=${max_epochs} -o DataLoader.Train.loader.num_workers=${num_workers} ${profiling_config}" # 以下为通用执行命令,无特殊可不用修改 case ${run_process_type} in SingleP) train_cmd="python ppcls/static/train.py ${train_cmd}";; MultiP) train_cmd="python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 ppcls/static/train.py ${train_cmd}";; *) echo "choose run_process_type(SingleP or MultiP)"; exit 1; esac echo "train_cmd: ${train_cmd} log_file: ${log_file}" timeout 5m ${train_cmd} > ${log_file} 2>&1 if [ $? -ne 0 ];then echo -e "${model_name}, FAIL" else echo -e "${model_name}, SUCCESS" fi # kill -9 `ps -ef|grep 'python'|awk '{print $2}'` if [ ${run_process_type} = "MultiP" -a -d mylog ]; then rm ${log_file} cp mylog/workerlog.0 ${log_file} fi cd ../ } # source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;如果不联调只想要产出训练log可以注掉本行,提交时需打开 _set_params $@ # _train # 如果只产出训练log,不解析,可取消注释 _run # 该函数在run_model.sh中,执行时会调用_train; 如果不联调只产出训练log可以注掉本行,提交时需打开