import copy import paddle import paddle.nn as nn from ppcls.utils import logger from .celoss import CELoss, MixCELoss from .googlenetloss import GoogLeNetLoss from .centerloss import CenterLoss from .emlloss import EmlLoss from .msmloss import MSMLoss from .npairsloss import NpairsLoss from .trihardloss import TriHardLoss from .triplet import TripletLoss, TripletLossV2 from .supconloss import SupConLoss from .pairwisecosface import PairwiseCosface from .dmlloss import DMLLoss from .distanceloss import DistanceLoss from .distillationloss import DistillationCELoss from .distillationloss import DistillationGTCELoss from .distillationloss import DistillationDMLLoss from .distillationloss import DistillationDistanceLoss from .distillationloss import DistillationRKDLoss from .multilabelloss import MultiLabelLoss from .deephashloss import DSHSDLoss, LCDSHLoss class CombinedLoss(nn.Layer): def __init__(self, config_list): super().__init__() self.loss_func = [] self.loss_weight = [] assert isinstance(config_list, list), ( 'operator config should be a list') for config in config_list: assert isinstance(config, dict) and len(config) == 1, "yaml format error" name = list(config)[0] param = config[name] assert "weight" in param, "weight must be in param, but param just contains {}".format( param.keys()) self.loss_weight.append(param.pop("weight")) self.loss_func.append(eval(name)(**param)) def __call__(self, input, batch): loss_dict = {} # just for accelerate classification traing speed if len(self.loss_func) == 1: loss = self.loss_func[0](input, batch) loss_dict.update(loss) loss_dict["loss"] = list(loss.values())[0] else: for idx, loss_func in enumerate(self.loss_func): loss = loss_func(input, batch) weight = self.loss_weight[idx] loss = {key: loss[key] * weight for key in loss} loss_dict.update(loss) loss_dict["loss"] = paddle.add_n(list(loss_dict.values())) return loss_dict def build_loss(config): module_class = CombinedLoss(copy.deepcopy(config)) logger.debug("build loss {} success.".format(module_class)) return module_class