# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import argparse import utils import shutil import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '../..'))) from ppcls.utils.save_load import load_dygraph_pretrain from ppcls.modeling import architectures import paddle from paddle.distributed import ParallelEnv import paddle.nn.functional as F def parse_args(): def str2bool(v): return v.lower() in ("true", "t", "1") parser = argparse.ArgumentParser() parser.add_argument("-i", "--image_file", type=str) parser.add_argument("-m", "--model", type=str) parser.add_argument("-p", "--pretrained_model", type=str) parser.add_argument("--use_gpu", type=str2bool, default=True) parser.add_argument( "--load_static_weights", type=str2bool, default=False, help='Whether to load the pretrained weights saved in static mode') # parameters for pre-label the images parser.add_argument( "--pre_label_image", type=str2bool, default=False, help="Whether to pre-label the images using the loaded weights") parser.add_argument("--pre_label_out_idr", type=str, default=None) return parser.parse_args() def create_operators(): size = 224 img_mean = [0.485, 0.456, 0.406] img_std = [0.229, 0.224, 0.225] img_scale = 1.0 / 255.0 decode_op = utils.DecodeImage() resize_op = utils.ResizeImage(resize_short=256) crop_op = utils.CropImage(size=(size, size)) normalize_op = utils.NormalizeImage( scale=img_scale, mean=img_mean, std=img_std) totensor_op = utils.ToTensor() return [decode_op, resize_op, crop_op, normalize_op, totensor_op] def preprocess(fname, ops): data = open(fname, 'rb').read() for op in ops: data = op(data) return data def postprocess(outputs, topk=5): output = outputs[0] prob = np.array(output).flatten() index = prob.argsort(axis=0)[-topk:][::-1].astype('int32') return zip(index, prob[index]) def get_image_list(img_file): imgs_lists = [] if img_file is None or not os.path.exists(img_file): raise Exception("not found any img file in {}".format(img_file)) img_end = ['jpg', 'png', 'jpeg', 'JPEG', 'JPG', 'bmp'] if os.path.isfile(img_file) and img_file.split('.')[-1] in img_end: imgs_lists.append(img_file) elif os.path.isdir(img_file): for single_file in os.listdir(img_file): if single_file.split('.')[-1] in img_end: imgs_lists.append(os.path.join(img_file, single_file)) if len(imgs_lists) == 0: raise Exception("not found any img file in {}".format(img_file)) return imgs_lists def save_prelabel_results(class_id, input_filepath, output_idr): output_dir = os.path.join(output_idr, str(class_id)) if not os.path.isdir(output_dir): os.makedirs(output_dir) shutil.copy(input_filepath, output_dir) def main(): args = parse_args() operators = create_operators() # assign the place if args.use_gpu: gpu_id = ParallelEnv().dev_id place = paddle.CUDAPlace(gpu_id) else: place = paddle.CPUPlace() paddle.disable_static(place) net = architectures.__dict__[args.model]() load_dygraph_pretrain(net, args.pretrained_model, args.load_static_weights) image_list = get_image_list(args.image_file) for idx, filename in enumerate(image_list): data = preprocess(filename, operators) data = np.expand_dims(data, axis=0) data = paddle.to_tensor(data) net.eval() outputs = net(data) if args.model == "GoogLeNet": outputs = outputs[0] else: outputs = F.softmax(outputs) outputs = outputs.numpy() probs = postprocess(outputs) top1_class_id = 0 rank = 1 print("Current image file: {}".format(filename)) for idx, prob in probs: print("\ttop{:d}, class id: {:d}, probability: {:.4f}".format( rank, idx, prob)) if rank == 1: top1_class_id = idx rank += 1 if args.pre_label_image: save_prelabel_results(top1_class_id, filename, args.pre_label_out_idr) return if __name__ == "__main__": main()