# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import os import pickle from .common_dataset import CommonDataset from ppcls.data.preprocess import transform class AttrDataset(CommonDataset): def _load_anno(self, seed=None, split='trainval'): assert os.path.exists(self._cls_path) assert os.path.exists(self._img_root) anno_path = self._cls_path image_dir = self._img_root self.images = [] self.labels = [] dataset_info = pickle.load(open(anno_path, 'rb+')) img_id = dataset_info.image_name attr_label = dataset_info.label attr_label[attr_label == 2] = 0 attr_id = dataset_info.attr_name if 'label_idx' in dataset_info.keys(): eval_attr_idx = dataset_info.label_idx.eval attr_label = attr_label[:, eval_attr_idx] attr_id = [attr_id[i] for i in eval_attr_idx] attr_num = len(attr_id) # mapping category name to class id # first_class:0, second_class:1, ... cname2cid = {attr_id[i]: i for i in range(attr_num)} assert split in dataset_info.partition.keys( ), f'split {split} is not exist' img_idx = dataset_info.partition[split] if isinstance(img_idx, list): img_idx = img_idx[0] # default partition 0 img_num = img_idx.shape[0] img_id = [img_id[i] for i in img_idx] label = attr_label[img_idx] # [:, [0, 12]] self.label_ratio = label.mean(0) print("label_ratio:", self.label_ratio) for i, (img_i, label_i) in enumerate(zip(img_id, label)): imgname = os.path.join(image_dir, img_i) self.images.append(imgname) self.labels.append(np.int64(label_i)) def __getitem__(self, idx): try: with open(self.images[idx], 'rb') as f: img = f.read() if self._transform_ops: img = transform(img, self._transform_ops) img = img.transpose((2, 0, 1)) return (img, [self.labels[idx], self.label_ratio]) except Exception as ex: logger.error("Exception occured when parse line: {} with msg: {}". format(self.images[idx], ex)) rnd_idx = np.random.randint(self.__len__()) return self.__getitem__(rnd_idx)