# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import numpy as np from collections import OrderedDict from optimizer import OptimizerBuilder import paddle import paddle.nn.functional as F from paddle import fluid from paddle.fluid.contrib.mixed_precision.fp16_utils import cast_model_to_fp16 from ppcls.optimizer.learning_rate import LearningRateBuilder from ppcls.modeling import architectures from ppcls.modeling.loss import CELoss from ppcls.modeling.loss import MixCELoss from ppcls.modeling.loss import JSDivLoss from ppcls.modeling.loss import GoogLeNetLoss from ppcls.utils.misc import AverageMeter from ppcls.utils import logger from paddle.distributed import fleet from paddle.distributed.fleet import DistributedStrategy def create_feeds(image_shape, use_mix=None, use_dali=None, dtype="float32"): """ Create feeds as model input Args: image_shape(list[int]): model input shape, such as [3, 224, 224] use_mix(bool): whether to use mix(include mixup, cutmix, fmix) Returns: feeds(dict): dict of model input variables """ feeds = OrderedDict() feeds['image'] = paddle.static.data( name="feed_image", shape=[None] + image_shape, dtype=dtype) if use_mix and not use_dali: feeds['feed_y_a'] = paddle.static.data( name="feed_y_a", shape=[None, 1], dtype="int64") feeds['feed_y_b'] = paddle.static.data( name="feed_y_b", shape=[None, 1], dtype="int64") feeds['feed_lam'] = paddle.static.data( name="feed_lam", shape=[None, 1], dtype=dtype) else: feeds['label'] = paddle.static.data( name="feed_label", shape=[None, 1], dtype="int64") return feeds def create_model(architecture, image, classes_num, config, is_train): """ Create a model Args: architecture(dict): architecture information, name(such as ResNet50) is needed image(variable): model input variable classes_num(int): num of classes config(dict): model config Returns: out(variable): model output variable """ use_pure_fp16 = config.get("use_pure_fp16", False) name = architecture["name"] params = architecture.get("params", {}) data_format = "NCHW" if "data_format" in config: params["data_format"] = config["data_format"] data_format = config["data_format"] input_image_channel = config.get('image_shape', [3, 224, 224])[0] if input_image_channel != 3: logger.warning( "Input image channel is changed to {}, maybe for better speed-up". format(input_image_channel)) params["input_image_channel"] = input_image_channel if "is_test" in params: params['is_test'] = not is_train model = architectures.__dict__[name](class_dim=classes_num, **params) if use_pure_fp16 and not config.get("use_dali", False): image = image.astype('float16') if data_format == "NHWC": image = paddle.tensor.transpose(image, [0, 2, 3, 1]) image.stop_gradient = True out = model(image) if config.get("use_pure_fp16", False): cast_model_to_fp16(paddle.static.default_main_program()) out = out.astype('float32') return out def create_loss(out, feeds, architecture, classes_num=1000, epsilon=None, use_mix=False, use_distillation=False, use_pure_fp16=False): """ Create a loss for optimization, such as: 1. CrossEnotry loss 2. CrossEnotry loss with label smoothing 3. CrossEnotry loss with mix(mixup, cutmix, fmix) 4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix) 5. GoogLeNet loss Args: out(variable): model output variable feeds(dict): dict of model input variables architecture(dict): architecture information, name(such as ResNet50) is needed classes_num(int): num of classes epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0 use_mix(bool): whether to use mix(include mixup, cutmix, fmix) use_pure_fp16(bool): whether to use pure fp16 data as training parameter Returns: loss(variable): loss variable """ if use_mix: feed_y_a = paddle.reshape(feeds['feed_y_a'], [-1, 1]) feed_y_b = paddle.reshape(feeds['feed_y_b'], [-1, 1]) feed_lam = paddle.reshape(feeds['feed_lam'], [-1, 1]) else: target = paddle.reshape(feeds['label'], [-1, 1]) if architecture["name"] == "GoogLeNet": assert len(out) == 3, "GoogLeNet should have 3 outputs" loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon) return loss(out[0], out[1], out[2], target) if use_distillation: assert len(out) == 2, ("distillation output length must be 2, " "but got {}".format(len(out))) loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon) return loss(out[1], out[0]) if use_mix: loss = MixCELoss(class_dim=classes_num, epsilon=epsilon) return loss(out, feed_y_a, feed_y_b, feed_lam, use_pure_fp16) else: loss = CELoss(class_dim=classes_num, epsilon=epsilon) return loss(out, target, use_pure_fp16) def create_metric(out, feeds, architecture, topk=5, classes_num=1000, config=None, use_distillation=False): """ Create measures of model accuracy, such as top1 and top5 Args: out(variable): model output variable feeds(dict): dict of model input variables(included label) topk(int): usually top5 classes_num(int): num of classes config(dict) : model config Returns: fetchs(dict): dict of measures """ label = paddle.reshape(feeds['label'], [-1, 1]) if architecture["name"] == "GoogLeNet": assert len(out) == 3, "GoogLeNet should have 3 outputs" out = out[0] else: # just need student label to get metrics if use_distillation: out = out[1] softmax_out = F.softmax(out) fetchs = OrderedDict() # set top1 to fetchs top1 = paddle.metric.accuracy(softmax_out, label=label, k=1) fetchs['top1'] = (top1, AverageMeter('top1', '.4f', need_avg=True)) # set topk to fetchs k = min(topk, classes_num) topk = paddle.metric.accuracy(softmax_out, label=label, k=k) topk_name = 'top{}'.format(k) fetchs[topk_name] = (topk, AverageMeter(topk_name, '.4f', need_avg=True)) return fetchs def create_fetchs(out, feeds, architecture, topk=5, classes_num=1000, epsilon=None, use_mix=False, config=None, use_distillation=False): """ Create fetchs as model outputs(included loss and measures), will call create_loss and create_metric(if use_mix). Args: out(variable): model output variable feeds(dict): dict of model input variables. If use mix_up, it will not include label. architecture(dict): architecture information, name(such as ResNet50) is needed topk(int): usually top5 classes_num(int): num of classes epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0 use_mix(bool): whether to use mix(include mixup, cutmix, fmix) config(dict): model config Returns: fetchs(dict): dict of model outputs(included loss and measures) """ fetchs = OrderedDict() use_pure_fp16 = config.get("use_pure_fp16", False) loss = create_loss(out, feeds, architecture, classes_num, epsilon, use_mix, use_distillation, use_pure_fp16) fetchs['loss'] = (loss, AverageMeter('loss', '7.4f', need_avg=True)) if not use_mix: metric = create_metric(out, feeds, architecture, topk, classes_num, config, use_distillation) fetchs.update(metric) return fetchs def create_optimizer(config): """ Create an optimizer using config, usually including learning rate and regularization. Args: config(dict): such as { 'LEARNING_RATE': {'function': 'Cosine', 'params': {'lr': 0.1} }, 'OPTIMIZER': {'function': 'Momentum', 'params':{'momentum': 0.9}, 'regularizer': {'function': 'L2', 'factor': 0.0001} } } Returns: an optimizer instance """ # create learning_rate instance lr_config = config['LEARNING_RATE'] lr_config['params'].update({ 'epochs': config['epochs'], 'step_each_epoch': config['total_images'] // config['TRAIN']['batch_size'], }) lr = LearningRateBuilder(**lr_config)() # create optimizer instance opt_config = config['OPTIMIZER'] opt = OptimizerBuilder(config, **opt_config) return opt(lr), lr def create_strategy(config): """ Create build strategy and exec strategy. Args: config(dict): config Returns: build_strategy: build strategy exec_strategy: exec strategy """ build_strategy = paddle.static.BuildStrategy() exec_strategy = paddle.static.ExecutionStrategy() exec_strategy.num_threads = 1 exec_strategy.num_iteration_per_drop_scope = 10000 if config.get( 'use_pure_fp16', False) else 10 fuse_op = config.get('use_amp', False) or config.get('use_pure_fp16', False) fuse_bn_act_ops = config.get('fuse_bn_act_ops', fuse_op) fuse_elewise_add_act_ops = config.get('fuse_elewise_add_act_ops', fuse_op) fuse_bn_add_act_ops = config.get('fuse_bn_add_act_ops', fuse_op) enable_addto = config.get('enable_addto', fuse_op) try: build_strategy.fuse_bn_act_ops = fuse_bn_act_ops except Exception as e: logger.info( "PaddlePaddle version 1.7.0 or higher is " "required when you want to fuse batch_norm and activation_op.") try: build_strategy.fuse_elewise_add_act_ops = fuse_elewise_add_act_ops except Exception as e: logger.info( "PaddlePaddle version 1.7.0 or higher is " "required when you want to fuse elewise_add_act and activation_op.") try: build_strategy.fuse_bn_add_act_ops = fuse_bn_add_act_ops except Exception as e: logger.info( "PaddlePaddle 2.0-rc or higher is " "required when you want to enable fuse_bn_add_act_ops strategy.") try: build_strategy.enable_addto = enable_addto except Exception as e: logger.info("PaddlePaddle 2.0-rc or higher is " "required when you want to enable addto strategy.") return build_strategy, exec_strategy def dist_optimizer(config, optimizer): """ Create a distributed optimizer based on a normal optimizer Args: config(dict): optimizer(): a normal optimizer Returns: optimizer: a distributed optimizer """ build_strategy, exec_strategy = create_strategy(config) dist_strategy = DistributedStrategy() dist_strategy.execution_strategy = exec_strategy dist_strategy.build_strategy = build_strategy dist_strategy.nccl_comm_num = 1 dist_strategy.fuse_all_reduce_ops = True dist_strategy.fuse_grad_size_in_MB = 16 optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy) return optimizer def mixed_precision_optimizer(config, optimizer): use_amp = config.get('use_amp', False) scale_loss = config.get('scale_loss', 1.0) use_dynamic_loss_scaling = config.get('use_dynamic_loss_scaling', False) if use_amp: optimizer = fluid.contrib.mixed_precision.decorate( optimizer, init_loss_scaling=scale_loss, use_dynamic_loss_scaling=use_dynamic_loss_scaling) return optimizer def build(config, main_prog, startup_prog, is_train=True, is_distributed=True): """ Build a program using a model and an optimizer 1. create feeds 2. create a dataloader 3. create a model 4. create fetchs 5. create an optimizer Args: config(dict): config main_prog(): main program startup_prog(): startup program is_train(bool): train or valid is_distributed(bool): whether to use distributed training method Returns: dataloader(): a bridge between the model and the data fetchs(dict): dict of model outputs(included loss and measures) """ with paddle.static.program_guard(main_prog, startup_prog): with paddle.utils.unique_name.guard(): use_mix = config.get('use_mix') and is_train use_dali = config.get('use_dali', False) use_distillation = config.get('use_distillation') image_dtype = "float32" if config["ARCHITECTURE"]["name"] == "ResNet50" and config.get("use_pure_fp16", False) \ and config.get("use_dali", False): image_dtype = "float16" feeds = create_feeds( config.image_shape, use_mix=use_mix, use_dali=use_dali, dtype=image_dtype) if use_dali and use_mix: import dali feeds = dali.mix(feeds, config, is_train) out = create_model(config.ARCHITECTURE, feeds['image'], config.classes_num, config, is_train) fetchs = create_fetchs( out, feeds, config.ARCHITECTURE, config.topk, config.classes_num, epsilon=config.get('ls_epsilon'), use_mix=use_mix, config=config, use_distillation=use_distillation) lr_scheduler = None if is_train: optimizer, lr_scheduler = create_optimizer(config) optimizer = mixed_precision_optimizer(config, optimizer) if is_distributed: optimizer = dist_optimizer(config, optimizer) optimizer.minimize(fetchs['loss'][0]) return fetchs, lr_scheduler, feeds def compile(config, program, loss_name=None, share_prog=None): """ Compile the program Args: config(dict): config program(): the program which is wrapped by loss_name(str): loss name share_prog(): the shared program, used for evaluation during training Returns: compiled_program(): a compiled program """ build_strategy, exec_strategy = create_strategy(config) compiled_program = paddle.static.CompiledProgram( program).with_data_parallel( share_vars_from=share_prog, loss_name=loss_name, build_strategy=build_strategy, exec_strategy=exec_strategy) return compiled_program total_step = 0 def run(dataloader, exe, program, feeds, fetchs, epoch=0, mode='train', config=None, vdl_writer=None, lr_scheduler=None): """ Feed data to the model and fetch the measures and loss Args: dataloader(paddle io dataloader): exe(): program(): fetchs(dict): dict of measures and the loss epoch(int): epoch of training or validation model(str): log only Returns: """ fetch_list = [f[0] for f in fetchs.values()] metric_list = [ ("lr", AverageMeter( 'lr', 'f', postfix=",", need_avg=False)), ("batch_time", AverageMeter( 'batch_cost', '.5f', postfix=" s,")), ("reader_time", AverageMeter( 'reader_cost', '.5f', postfix=" s,")), ] topk_name = 'top{}'.format(config.topk) metric_list.insert(0, ("loss", fetchs["loss"][1])) use_mix = config.get("use_mix", False) and mode == "train" if not use_mix: metric_list.insert(0, (topk_name, fetchs[topk_name][1])) metric_list.insert(0, ("top1", fetchs["top1"][1])) metric_list = OrderedDict(metric_list) for m in metric_list.values(): m.reset() use_dali = config.get('use_dali', False) dataloader = dataloader if use_dali else dataloader() tic = time.time() for idx, batch in enumerate(dataloader): # ignore the warmup iters if idx == 5: metric_list["batch_time"].reset() metric_list["reader_time"].reset() metric_list['reader_time'].update(time.time() - tic) if use_dali: batch_size = batch[0]["feed_image"].shape()[0] feed_dict = batch[0] else: batch_size = batch[0].shape()[0] feed_dict = { key.name: batch[idx] for idx, key in enumerate(feeds.values()) } metrics = exe.run(program=program, feed=feed_dict, fetch_list=fetch_list) for name, m in zip(fetchs.keys(), metrics): metric_list[name].update(np.mean(m), batch_size) metric_list["batch_time"].update(time.time() - tic) if mode == "train": metric_list['lr'].update(lr_scheduler.get_lr()) fetchs_str = ' '.join([ str(metric_list[key].mean) if "time" in key else str(metric_list[key].value) for key in metric_list ]) ips_info = " ips: {:.5f} images/sec.".format( batch_size / metric_list["batch_time"].avg) fetchs_str += ips_info if lr_scheduler is not None: if lr_scheduler.update_specified: curr_global_counter = lr_scheduler.step_each_epoch * epoch + idx update = max( 0, curr_global_counter - lr_scheduler. update_start_step) % lr_scheduler.update_step_interval == 0 if update: lr_scheduler.step() else: lr_scheduler.step() if vdl_writer: global total_step logger.scaler('loss', metrics[0][0], total_step, vdl_writer) total_step += 1 if mode == 'valid': if idx % config.get('print_interval', 10) == 0: logger.info("{:s} step:{:<4d} {:s}".format(mode, idx, fetchs_str)) else: epoch_str = "epoch:{:<3d}".format(epoch) step_str = "{:s} step:{:<4d}".format(mode, idx) if idx % config.get('print_interval', 10) == 0: logger.info("{:s} {:s} {:s}".format( logger.coloring(epoch_str, "HEADER") if idx == 0 else epoch_str, logger.coloring(step_str, "PURPLE"), logger.coloring(fetchs_str, 'OKGREEN'))) tic = time.time() end_str = ' '.join([str(m.mean) for m in metric_list.values()] + [metric_list["batch_time"].total]) ips_info = "ips: {:.5f} images/sec.".format( batch_size * metric_list["batch_time"].count / metric_list["batch_time"].sum) if mode == 'valid': logger.info("END {:s} {:s} {:s}".format(mode, end_str, ips_info)) else: end_epoch_str = "END epoch:{:<3d}".format(epoch) logger.info("{:s} {:s} {:s} {:s}".format(end_epoch_str, mode, end_str, ips_info)) if use_dali: dataloader.reset() # return top1_acc in order to save the best model if mode == 'valid': return fetchs["top1"][1].avg