# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn from .vision_transformer import VisionTransformer, Identity, trunc_normal_, zeros_ __all__ = [ 'DeiT_tiny_patch16_224', 'DeiT_small_patch16_224', 'DeiT_base_patch16_224', 'DeiT_tiny_distilled_patch16_224', 'DeiT_small_distilled_patch16_224', 'DeiT_base_distilled_patch16_224', 'DeiT_base_patch16_384', 'DeiT_base_distilled_patch16_384' ] class DistilledVisionTransformer(VisionTransformer): def __init__(self, img_size=224, patch_size=16, class_dim=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=False, norm_layer='nn.LayerNorm', epsilon=1e-5, **kwargs): super().__init__( img_size=img_size, patch_size=patch_size, class_dim=class_dim, embed_dim=embed_dim, depth=depth, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer, epsilon=epsilon, **kwargs) self.pos_embed = self.create_parameter( shape=(1, self.patch_embed.num_patches + 2, self.embed_dim), default_initializer=zeros_) self.add_parameter("pos_embed", self.pos_embed) self.dist_token = self.create_parameter( shape=(1, 1, self.embed_dim), default_initializer=zeros_) self.add_parameter("cls_token", self.cls_token) self.head_dist = nn.Linear( self.embed_dim, self.class_dim) if self.class_dim > 0 else Identity() trunc_normal_(self.dist_token) trunc_normal_(self.pos_embed) self.head_dist.apply(self._init_weights) def forward_features(self, x): B = paddle.shape(x)[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand((B, -1, -1)) dist_token = self.dist_token.expand((B, -1, -1)) x = paddle.concat((cls_tokens, dist_token, x), axis=1) x = x + self.pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) x = self.norm(x) return x[:, 0], x[:, 1] def forward(self, x): x, x_dist = self.forward_features(x) x = self.head(x) x_dist = self.head_dist(x_dist) return (x + x_dist) / 2 def DeiT_tiny_patch16_224(**kwargs): model = VisionTransformer( patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, epsilon=1e-6, **kwargs) return model def DeiT_small_patch16_224(**kwargs): model = VisionTransformer( patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, epsilon=1e-6, **kwargs) return model def DeiT_base_patch16_224(**kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, epsilon=1e-6, **kwargs) return model def DeiT_tiny_distilled_patch16_224(**kwargs): model = DistilledVisionTransformer( patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, epsilon=1e-6, **kwargs) return model def DeiT_small_distilled_patch16_224(**kwargs): model = DistilledVisionTransformer( patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, epsilon=1e-6, **kwargs) return model def DeiT_base_distilled_patch16_224(**kwargs): model = DistilledVisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, epsilon=1e-6, **kwargs) return model def DeiT_base_patch16_384(**kwargs): model = VisionTransformer( img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, epsilon=1e-6, **kwargs) return model def DeiT_base_distilled_patch16_384(**kwargs): model = DistilledVisionTransformer( img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, epsilon=1e-6, **kwargs) return model