#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle import paddle.fluid as fluid from paddle.fluid.param_attr import ParamAttr __all__ = [ "ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl", "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl", "Fix_ResNeXt101_32x48d_wsl" ] class ResNeXt101_wsl(): def __init__(self, layers=101, cardinality=32, width=48): self.layers = layers self.cardinality = cardinality self.width = width def net(self, input, class_dim=1000): layers = self.layers cardinality = self.cardinality width = self.width depth = [3, 4, 23, 3] base_width = cardinality * width num_filters = [base_width * i for i in [1, 2, 4, 8]] conv = self.conv_bn_layer( input=input, num_filters=64, filter_size=7, stride=2, act='relu', name="conv1") #debug conv = fluid.layers.pool2d( input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max') for block in range(len(depth)): for i in range(depth[block]): conv_name = 'layer' + str(block + 1) + "." + str(i) conv = self.bottleneck_block( input=conv, num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, cardinality=cardinality, name=conv_name) pool = fluid.layers.pool2d( input=conv, pool_type='avg', global_pooling=True) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) out = fluid.layers.fc( input=pool, size=class_dim, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name='fc.weight'), bias_attr=fluid.param_attr.ParamAttr(name='fc.bias')) return out def conv_bn_layer(self, input, num_filters, filter_size, stride=1, groups=1, act=None, name=None): if "downsample" in name: conv_name = name + '.0' else: conv_name = name conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, act=None, param_attr=ParamAttr(name=conv_name + ".weight"), bias_attr=False) if "downsample" in name: bn_name = name[:9] + 'downsample' + '.1' else: if "conv1" == name: bn_name = 'bn' + name[-1] else: bn_name = (name[:10] if name[7:9].isdigit() else name[:9] ) + 'bn' + name[-1] return fluid.layers.batch_norm( input=conv, act=act, param_attr=ParamAttr(name=bn_name + '.weight'), bias_attr=ParamAttr(bn_name + '.bias'), moving_mean_name=bn_name + '.running_mean', moving_variance_name=bn_name + '.running_var', ) def shortcut(self, input, ch_out, stride, name): ch_in = input.shape[1] if ch_in != ch_out or stride != 1: return self.conv_bn_layer(input, ch_out, 1, stride, name=name) else: return input def bottleneck_block(self, input, num_filters, stride, cardinality, name): cardinality = self.cardinality width = self.width conv0 = self.conv_bn_layer( input=input, num_filters=num_filters, filter_size=1, act='relu', name=name + ".conv1") conv1 = self.conv_bn_layer( input=conv0, num_filters=num_filters, filter_size=3, stride=stride, groups=cardinality, act='relu', name=name + ".conv2") conv2 = self.conv_bn_layer( input=conv1, num_filters=num_filters // (width // 8), filter_size=1, act=None, name=name + ".conv3") short = self.shortcut( input, num_filters // (width // 8), stride, name=name + ".downsample") return fluid.layers.elementwise_add(x=short, y=conv2, act='relu') def ResNeXt101_32x8d_wsl(): model = ResNeXt101_wsl(cardinality=32, width=8) return model def ResNeXt101_32x16d_wsl(): model = ResNeXt101_wsl(cardinality=32, width=16) return model def ResNeXt101_32x32d_wsl(): model = ResNeXt101_wsl(cardinality=32, width=32) return model def ResNeXt101_32x48d_wsl(): model = ResNeXt101_wsl(cardinality=32, width=48) return model def Fix_ResNeXt101_32x48d_wsl(): model = ResNeXt101_wsl(cardinality=32, width=48) return model