#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.fluid as fluid import math from paddle.fluid.param_attr import ParamAttr __all__ = [ "Res2Net", "Res2Net50_48w_2s", "Res2Net50_26w_4s", "Res2Net50_14w_8s", "Res2Net50_26w_6s", "Res2Net50_26w_8s", "Res2Net101_26w_4s", "Res2Net152_26w_4s" ] class Res2Net(): def __init__(self, layers=50, scales=4, width=26): self.layers = layers self.scales = scales self.width = width def net(self, input, class_dim=1000): layers = self.layers supported_layers = [50, 101, 152] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format(supported_layers, layers) basic_width = self.width * self.scales num_filters1 = [basic_width * t for t in [1, 2, 4, 8]] num_filters2 = [256 * t for t in [1, 2, 4, 8]] if layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] conv = self.conv_bn_layer( input=input, num_filters=64, filter_size=7, stride=2, act='relu', name="conv1") conv = fluid.layers.pool2d( input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max') for block in range(len(depth)): for i in range(depth[block]): if layers in [101, 152] and block == 2: if i == 0: conv_name = "res" + str(block + 2) + "a" else: conv_name = "res" + str(block + 2) + "b" + str(i) else: conv_name = "res" + str(block + 2) + chr(97 + i) conv = self.bottleneck_block( input=conv, num_filters1=num_filters1[block], num_filters2=num_filters2[block], stride=2 if i == 0 and block != 0 else 1, name=conv_name) pool = fluid.layers.pool2d( input=conv, pool_size=7, pool_stride=1, pool_type='avg', global_pooling=True) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) out = fluid.layers.fc( input=pool, size=class_dim, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name='fc_weights'), bias_attr=fluid.param_attr.ParamAttr(name='fc_offset')) return out def conv_bn_layer(self, input, num_filters, filter_size, stride=1, groups=1, act=None, name=None): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, act=None, param_attr=ParamAttr(name=name + "_weights"), bias_attr=False) if name == "conv1": bn_name = "bn_" + name else: bn_name = "bn" + name[3:] return fluid.layers.batch_norm( input=conv, act=act, param_attr=ParamAttr(name=bn_name + '_scale'), bias_attr=ParamAttr(bn_name + '_offset'), moving_mean_name=bn_name + '_mean', moving_variance_name=bn_name + '_variance') def shortcut(self, input, ch_out, stride, name): ch_in = input.shape[1] if ch_in != ch_out or stride != 1: return self.conv_bn_layer(input, ch_out, 1, stride, name=name) else: return input def bottleneck_block(self, input, num_filters1, num_filters2, stride, name): conv0 = self.conv_bn_layer( input=input, num_filters=num_filters1, filter_size=1, stride=1, act='relu', name=name + '_branch2a') xs = fluid.layers.split(conv0, self.scales, 1) ys = [] for s in range(self.scales - 1): if s == 0 or stride == 2: ys.append( self.conv_bn_layer( input=xs[s], num_filters=num_filters1 // self.scales, stride=stride, filter_size=3, act='relu', name=name + '_branch2b_' + str(s + 1))) else: ys.append( self.conv_bn_layer( input=xs[s] + ys[-1], num_filters=num_filters1 // self.scales, stride=stride, filter_size=3, act='relu', name=name + '_branch2b_' + str(s + 1))) if stride == 1: ys.append(xs[-1]) else: ys.append( fluid.layers.pool2d( input=xs[-1], pool_size=3, pool_stride=stride, pool_padding=1, pool_type='avg')) conv1 = fluid.layers.concat(ys, axis=1) conv2 = self.conv_bn_layer( input=conv1, num_filters=num_filters2, filter_size=1, act=None, name=name + "_branch2c") short = self.shortcut( input, num_filters2, stride, name=name + "_branch1") return fluid.layers.elementwise_add(x=short, y=conv2, act='relu') def Res2Net50_48w_2s(): model = Res2Net(layers=50, scales=2, width=48) return model def Res2Net50_26w_4s(): model = Res2Net(layers=50, scales=4, width=26) return model def Res2Net50_14w_8s(): model = Res2Net(layers=50, scales=8, width=14) return model def Res2Net50_26w_6s(): model = Res2Net(layers=50, scales=6, width=26) return model def Res2Net50_26w_8s(): model = Res2Net(layers=50, scales=8, width=26) return model def Res2Net101_26w_4s(): model = Res2Net(layers=101, scales=4, width=26) return model def Res2Net152_26w_4s(): model = Res2Net(layers=152, scales=4, width=26) return model