# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F from paddle.nn import Conv2d, BatchNorm, Linear, Dropout from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d from paddle.nn.initializer import MSRA import math __all__ = [ "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33", "ShuffleNetV2_x0_5", "ShuffleNetV2", "ShuffleNetV2_x1_5", "ShuffleNetV2_x2_0", "ShuffleNetV2_swish" ] def channel_shuffle(x, groups): batchsize, num_channels, height, width = x.shape[0], x.shape[1], x.shape[ 2], x.shape[3] channels_per_group = num_channels // groups # reshape x = paddle.reshape( x=x, shape=[batchsize, groups, channels_per_group, height, width]) x = paddle.transpose(x=x, perm=[0, 2, 1, 3, 4]) # flatten x = paddle.reshape(x=x, shape=[batchsize, num_channels, height, width]) return x class ConvBNLayer(nn.Layer): def __init__(self, num_channels, filter_size, num_filters, stride, padding, channels=None, num_groups=1, if_act=True, act='relu', name=None): super(ConvBNLayer, self).__init__() self._if_act = if_act assert act in ['relu', 'swish'], \ "supported act are {} but your act is {}".format( ['relu', 'swish'], act) self._act = act self._conv = Conv2d( in_channels=num_channels, out_channels=num_filters, kernel_size=filter_size, stride=stride, padding=padding, groups=num_groups, weight_attr=ParamAttr( initializer=MSRA(), name=name + "_weights"), bias_attr=False) self._batch_norm = BatchNorm( num_filters, param_attr=ParamAttr(name=name + "_bn_scale"), bias_attr=ParamAttr(name=name + "_bn_offset"), moving_mean_name=name + "_bn_mean", moving_variance_name=name + "_bn_variance") def forward(self, inputs, if_act=True): y = self._conv(inputs) y = self._batch_norm(y) if self._if_act: y = F.relu(y) if self._act == 'relu' else F.swish(y) return y class InvertedResidualUnit(nn.Layer): def __init__(self, num_channels, num_filters, stride, benchmodel, act='relu', name=None): super(InvertedResidualUnit, self).__init__() assert stride in [1, 2], \ "supported stride are {} but your stride is {}".format([ 1, 2], stride) self.benchmodel = benchmodel oup_inc = num_filters // 2 inp = num_channels if benchmodel == 1: self._conv_pw = ConvBNLayer( num_channels=num_channels // 2, num_filters=oup_inc, filter_size=1, stride=1, padding=0, num_groups=1, if_act=True, act=act, name='stage_' + name + '_conv1') self._conv_dw = ConvBNLayer( num_channels=oup_inc, num_filters=oup_inc, filter_size=3, stride=stride, padding=1, num_groups=oup_inc, if_act=False, act=act, name='stage_' + name + '_conv2') self._conv_linear = ConvBNLayer( num_channels=oup_inc, num_filters=oup_inc, filter_size=1, stride=1, padding=0, num_groups=1, if_act=True, act=act, name='stage_' + name + '_conv3') else: # branch1 self._conv_dw_1 = ConvBNLayer( num_channels=num_channels, num_filters=inp, filter_size=3, stride=stride, padding=1, num_groups=inp, if_act=False, act=act, name='stage_' + name + '_conv4') self._conv_linear_1 = ConvBNLayer( num_channels=inp, num_filters=oup_inc, filter_size=1, stride=1, padding=0, num_groups=1, if_act=True, act=act, name='stage_' + name + '_conv5') # branch2 self._conv_pw_2 = ConvBNLayer( num_channels=num_channels, num_filters=oup_inc, filter_size=1, stride=1, padding=0, num_groups=1, if_act=True, act=act, name='stage_' + name + '_conv1') self._conv_dw_2 = ConvBNLayer( num_channels=oup_inc, num_filters=oup_inc, filter_size=3, stride=stride, padding=1, num_groups=oup_inc, if_act=False, act=act, name='stage_' + name + '_conv2') self._conv_linear_2 = ConvBNLayer( num_channels=oup_inc, num_filters=oup_inc, filter_size=1, stride=1, padding=0, num_groups=1, if_act=True, act=act, name='stage_' + name + '_conv3') def forward(self, inputs): if self.benchmodel == 1: x1, x2 = paddle.split( inputs, num_or_sections=[inputs.shape[1] // 2, inputs.shape[1] // 2], axis=1) x2 = self._conv_pw(x2) x2 = self._conv_dw(x2) x2 = self._conv_linear(x2) out = paddle.concat([x1, x2], axis=1) else: x1 = self._conv_dw_1(inputs) x1 = self._conv_linear_1(x1) x2 = self._conv_pw_2(inputs) x2 = self._conv_dw_2(x2) x2 = self._conv_linear_2(x2) out = paddle.concat([x1, x2], axis=1) return channel_shuffle(out, 2) class ShuffleNet(nn.Layer): def __init__(self, class_dim=1000, scale=1.0, act='relu'): super(ShuffleNet, self).__init__() self.scale = scale self.class_dim = class_dim stage_repeats = [4, 8, 4] if scale == 0.25: stage_out_channels = [-1, 24, 24, 48, 96, 512] elif scale == 0.33: stage_out_channels = [-1, 24, 32, 64, 128, 512] elif scale == 0.5: stage_out_channels = [-1, 24, 48, 96, 192, 1024] elif scale == 1.0: stage_out_channels = [-1, 24, 116, 232, 464, 1024] elif scale == 1.5: stage_out_channels = [-1, 24, 176, 352, 704, 1024] elif scale == 2.0: stage_out_channels = [-1, 24, 224, 488, 976, 2048] else: raise NotImplementedError("This scale size:[" + str(scale) + "] is not implemented!") # 1. conv1 self._conv1 = ConvBNLayer( num_channels=3, num_filters=stage_out_channels[1], filter_size=3, stride=2, padding=1, if_act=True, act=act, name='stage1_conv') self._max_pool = MaxPool2d(kernel_size=3, stride=2, padding=1) # 2. bottleneck sequences self._block_list = [] i = 1 in_c = int(32 * scale) for idxstage in range(len(stage_repeats)): numrepeat = stage_repeats[idxstage] output_channel = stage_out_channels[idxstage + 2] for i in range(numrepeat): if i == 0: block = self.add_sublayer( str(idxstage + 2) + '_' + str(i + 1), InvertedResidualUnit( num_channels=stage_out_channels[idxstage + 1], num_filters=output_channel, stride=2, benchmodel=2, act=act, name=str(idxstage + 2) + '_' + str(i + 1))) self._block_list.append(block) else: block = self.add_sublayer( str(idxstage + 2) + '_' + str(i + 1), InvertedResidualUnit( num_channels=output_channel, num_filters=output_channel, stride=1, benchmodel=1, act=act, name=str(idxstage + 2) + '_' + str(i + 1))) self._block_list.append(block) # 3. last_conv self._last_conv = ConvBNLayer( num_channels=stage_out_channels[-2], num_filters=stage_out_channels[-1], filter_size=1, stride=1, padding=0, if_act=True, act=act, name='conv5') # 4. pool self._pool2d_avg = AdaptiveAvgPool2d(1) self._out_c = stage_out_channels[-1] # 5. fc self._fc = Linear( stage_out_channels[-1], class_dim, weight_attr=ParamAttr(name='fc6_weights'), bias_attr=ParamAttr(name='fc6_offset')) def forward(self, inputs): y = self._conv1(inputs) y = self._max_pool(y) for inv in self._block_list: y = inv(y) y = self._last_conv(y) y = self._pool2d_avg(y) y = paddle.reshape(y, shape=[-1, self._out_c]) y = self._fc(y) return y def ShuffleNetV2_x0_25(**args): model = ShuffleNetV2(scale=0.25, **args) return model def ShuffleNetV2_x0_33(**args): model = ShuffleNet(scale=0.33, **args) return model def ShuffleNetV2_x0_5(**args): model = ShuffleNet(scale=0.5, **args) return model def ShuffleNetV2(**args): model = ShuffleNet(scale=1.0, **args) return model def ShuffleNetV2_x1_5(**args): model = ShuffleNet(scale=1.5, **args) return model def ShuffleNetV2_x2_0(**args): model = ShuffleNet(scale=2.0, **args) return model def ShuffleNetV2_swish(**args): model = ShuffleNet(scale=1.0, act='swish', **args) return model