# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Code was based on https://github.com/microsoft/Swin-Transformer # reference: https://arxiv.org/abs/2103.14030 import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.nn.initializer import TruncatedNormal, Constant from ..model_zoo.vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity from ..base.theseus_layer import TheseusLayer from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url MODEL_URLS = { "SwinTransformer_tiny_patch4_window7_224": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams", "SwinTransformer_small_patch4_window7_224": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_small_patch4_window7_224_pretrained.pdparams", "SwinTransformer_base_patch4_window7_224": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_base_patch4_window7_224_pretrained.pdparams", "SwinTransformer_base_patch4_window12_384": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_base_patch4_window12_384_pretrained.pdparams", "SwinTransformer_large_patch4_window7_224": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams", "SwinTransformer_large_patch4_window12_384": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams", } __all__ = list(MODEL_URLS.keys()) # The following re-implementation of roll is inspired by # https://gitee.com/ascend/pytorch/blob/master/torch_npu/contrib/function/roll.py class RollWithIndexSelect(paddle.autograd.PyLayer): @staticmethod def forward(ctx, input1, index_fp, index_bp): N, H, W, C = input1.shape ctx.input1 = input1 ctx.index_bp = index_bp result = input1.reshape([N, H * W, C]).index_select(index_fp, 1).reshape([N, H, W, C]) return result @staticmethod def backward(ctx, grad): input1 = ctx.input1 N, H, W, C = input1.shape index_bp = ctx.index_bp grad_input = grad.reshape([N, H * W, C]).index_select(index_bp, 1).reshape([N, H, W, C]) return grad_input, None, None def get_roll_index(H, W, shifts, place): index = np.arange(0, H * W, dtype=np.int64).reshape([H, W]) index_fp = np.roll(index, shift=shifts, axis=(0, 1)).reshape([-1]) index_bp = {i:idx for idx, i in enumerate(index_fp.tolist())} index_bp = [index_bp[i] for i in range(H * W)] index_fp = paddle.to_tensor(index_fp, place=place) index_bp = paddle.to_tensor(index_fp, dtype='int64', place=place) return [index_fp, index_bp] def singleton(cls): def wrapper_singleton(*args, **kwargs): if not wrapper_singleton.instance: wrapper_singleton.instance = cls(*args, **kwargs) return wrapper_singleton.instance wrapper_singleton.instance = None return wrapper_singleton @singleton class RollWrapperSingleton(): def __init__(self): self.index_dict = {} self.roll_with_index_select = RollWithIndexSelect.apply self.enable = True if 'npu' in paddle.device.get_all_custom_device_type() else False def __call__(self, x, shifts, axis): if not self.enable: return paddle.roll(x, shifts, axis) assert x.dim() == 4 assert len(shifts) == 2 assert len(axis) == 2 N, H, W, C = x.shape key = (H, W, shifts, axis) if key not in self.index_dict: self.index_dict[key] = get_roll_index(H, W, shifts, x.place) index_fp, index_bp = self.index_dict[key] return self.roll_with_index_select(x, index_fp, index_bp) class Mlp(nn.Layer): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.reshape( [B, H // window_size, window_size, W // window_size, window_size, C]) windows = x.transpose([0, 1, 3, 2, 4, 5]).reshape( [-1, window_size, window_size, C]) return windows def window_reverse(windows, window_size, H, W, C): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ x = windows.reshape( [-1, H // window_size, W // window_size, window_size, window_size, C]) x = x.transpose([0, 1, 3, 2, 4, 5]).reshape([-1, H, W, C]) return x class WindowAttention(nn.Layer): r""" Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 # define a parameter table of relative position bias # 2*Wh-1 * 2*Ww-1, nH self.relative_position_bias_table = self.create_parameter( shape=((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads), default_initializer=zeros_) self.add_parameter("relative_position_bias_table", self.relative_position_bias_table) # get pair-wise relative position index for each token inside the window coords_h = paddle.arange(self.window_size[0]) coords_w = paddle.arange(self.window_size[1]) coords = paddle.stack(paddle.meshgrid( [coords_h, coords_w])) # 2, Wh, Ww coords_flatten = paddle.flatten(coords, 1) # 2, Wh*Ww coords_flatten_1 = coords_flatten.unsqueeze(axis=2) coords_flatten_2 = coords_flatten.unsqueeze(axis=1) relative_coords = coords_flatten_1 - coords_flatten_2 relative_coords = relative_coords.transpose( [1, 2, 0]) # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[ 0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table) self.softmax = nn.Softmax(axis=-1) def eval(self, ): # this is used to re-param swin for model export relative_position_bias_table = self.relative_position_bias_table window_size = self.window_size index = self.relative_position_index.reshape([-1]) relative_position_bias = paddle.index_select( relative_position_bias_table, index) relative_position_bias = relative_position_bias.reshape([ window_size[0] * window_size[1], window_size[0] * window_size[1], -1 ]) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.transpose( [2, 0, 1]) # nH, Wh*Ww, Wh*Ww relative_position_bias = relative_position_bias.unsqueeze(0) self.register_buffer("relative_position_bias", relative_position_bias) def forward(self, x, mask=None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = self.qkv(x).reshape( [B_, N, 3, self.num_heads, C // self.num_heads]).transpose( [2, 0, 3, 1, 4]) q, k, v = qkv[0], qkv[1], qkv[2] q = q * self.scale attn = paddle.mm(q, k.transpose([0, 1, 3, 2])) if self.training or not hasattr(self, "relative_position_bias"): index = self.relative_position_index.reshape([-1]) relative_position_bias = paddle.index_select( self.relative_position_bias_table, index) relative_position_bias = relative_position_bias.reshape([ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 ]) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.transpose( [2, 0, 1]) # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) else: attn = attn + self.relative_position_bias if mask is not None: nW = mask.shape[0] attn = attn.reshape([B_ // nW, nW, self.num_heads, N, N ]) + mask.unsqueeze(1).unsqueeze(0) attn = attn.reshape([-1, self.num_heads, N, N]) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) # x = (attn @ v).transpose(1, 2).reshape([B_, N, C]) x = paddle.mm(attn, v).transpose([0, 2, 1, 3]).reshape([B_, N, C]) x = self.proj(x) x = self.proj_drop(x) return x def extra_repr(self): return "dim={}, window_size={}, num_heads={}".format( self.dim, self.window_size, self.num_heads) def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class SwinTransformerBlock(nn.Layer): r""" Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Layer, optional): Activation layer. Default: nn.GELU norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(self.input_resolution) assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if self.shift_size > 0: # calculate attention mask for SW-MSA H, W = self.input_resolution img_mask = paddle.zeros((1, H, W, 1)) # 1 H W 1 h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition( img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.reshape( [-1, self.window_size * self.window_size]) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) huns = -100.0 * paddle.ones_like(attn_mask) attn_mask = huns * (attn_mask != 0).astype("float32") else: attn_mask = None self.register_buffer("attn_mask", attn_mask) def forward(self, x): H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" shortcut = x x = self.norm1(x) x = x.reshape([B, H, W, C]) roll = RollWrapperSingleton() # cyclic shift if self.shift_size > 0: shifted_x = roll( x, shifts=(-self.shift_size, -self.shift_size), axis=(1, 2)) else: shifted_x = x # partition windows x_windows = window_partition( shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.reshape( [-1, self.window_size * self.window_size, C]) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn( x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.reshape( [-1, self.window_size, self.window_size, C]) shifted_x = window_reverse(attn_windows, self.window_size, H, W, C) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = roll( shifted_x, shifts=(self.shift_size, self.shift_size), axis=(1, 2)) else: x = shifted_x x = x.reshape([B, H * W, C]) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def extra_repr(self): return "dim={}, input_resolution={}, num_heads={}, window_size={}, shift_size={}, mlp_ratio={}".format( self.dim, self.input_resolution, self.num_heads, self.window_size, self.shift_size, self.mlp_ratio) def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # W-MSA/SW-MSA nW = H * W / self.window_size / self.window_size flops += nW * self.attn.flops(self.window_size * self.window_size) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class PatchMerging(nn.Layer): r""" Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias_attr=False) self.norm = norm_layer(4 * dim) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" assert H % 2 == 0 and W % 2 == 0, "x size ({}*{}) are not even.".format( H, W) # x = x.reshape([B, H, W, C]) # x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C # x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C # x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C # x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C # x = paddle.concat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.reshape([B, H//2, 2, W//2, 2, C]) x = x.transpose((0, 1, 3, 4, 2, 5)) x = x.reshape([B, H * W // 4, 4 * C]) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x def extra_repr(self): return "input_resolution={}, dim={}".format(self.input_resolution, self.dim) def flops(self): H, W = self.input_resolution flops = H * W * self.dim flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim return flops class BasicLayer(nn.Layer): """ A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Layer | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.LayerList([ SwinTransformerBlock( dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth) ]) # patch merging layer if downsample is not None: self.downsample = downsample( input_resolution, dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x): for blk in self.blocks: x = blk(x) if self.downsample is not None: x = self.downsample(x) return x def extra_repr(self): return "dim={}, input_resolution={}, depth={}".format( self.dim, self.input_resolution, self.depth) def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() if self.downsample is not None: flops += self.downsample.flops() return flops class PatchEmbed(nn.Layer): """ Image to Patch Embedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Layer, optional): Normalization layer. Default: None """ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [ img_size[0] // patch_size[0], img_size[1] // patch_size[1] ] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv2D( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): B, C, H, W = x.shape # TODO (littletomatodonkey), uncomment the line will cause failure of jit.save # assert [H, W] == self.img_size[:2], "Input image size ({H}*{W}) doesn't match model ({}*{}).".format(H, W, self.img_size[0], self.img_size[1]) x = self.proj(x) x = x.flatten(2).transpose([0, 2, 1]) # B Ph*Pw C if self.norm is not None: x = self.norm(x) return x def flops(self): Ho, Wo = self.patches_resolution flops = Ho * Wo * self.embed_dim * self.in_chans * ( self.patch_size[0] * self.patch_size[1]) if self.norm is not None: flops += Ho * Wo * self.embed_dim return flops class SwinTransformer(TheseusLayer): """ Swin Transformer A PaddlePaddle impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Layer): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False """ def __init__(self, img_size=224, patch_size=4, in_chans=3, class_num=1000, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, **kwargs): super(SwinTransformer, self).__init__() self.num_classes = num_classes = class_num self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim * 2**(self.num_layers - 1)) self.mlp_ratio = mlp_ratio # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # absolute position embedding if self.ape: self.absolute_pos_embed = self.create_parameter( shape=(1, num_patches, embed_dim), default_initializer=zeros_) self.add_parameter("absolute_pos_embed", self.absolute_pos_embed) trunc_normal_(self.absolute_pos_embed) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = np.linspace(0, drop_path_rate, sum(depths)).tolist() # stochastic depth decay rule # build layers self.layers = nn.LayerList() for i_layer in range(self.num_layers): layer = BasicLayer( dim=int(embed_dim * 2**i_layer), input_resolution=(patches_resolution[0] // (2**i_layer), patches_resolution[1] // (2**i_layer)), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint) self.layers.append(layer) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1D(1) self.head = nn.Linear( self.num_features, num_classes) if self.num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: zeros_(m.bias) elif isinstance(m, nn.LayerNorm): zeros_(m.bias) ones_(m.weight) def forward_features(self, x): x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) for layer in self.layers: x = layer(x) x = self.norm(x) # B L C x = self.avgpool(x.transpose([0, 2, 1])) # B C 1 x = paddle.flatten(x, 1) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def flops(self): flops = 0 flops += self.patch_embed.flops() for _, layer in enumerate(self.layers): flops += layer.flops() flops += self.num_features * self.patches_resolution[ 0] * self.patches_resolution[1] // (2**self.num_layers) flops += self.num_features * self.num_classes return flops def _load_pretrained(pretrained, model, model_url, use_ssld=False): if pretrained is False: pass elif pretrained is True: load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) elif isinstance(pretrained, str): load_dygraph_pretrain(model, pretrained) else: raise RuntimeError( "pretrained type is not available. Please use `string` or `boolean` type." ) def SwinTransformer_tiny_patch4_window7_224(pretrained=False, use_ssld=False, **kwargs): model = SwinTransformer( embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, drop_path_rate=0.2, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SwinTransformer_tiny_patch4_window7_224"], use_ssld=use_ssld) return model def SwinTransformer_small_patch4_window7_224(pretrained=False, use_ssld=False, **kwargs): model = SwinTransformer( embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SwinTransformer_small_patch4_window7_224"], use_ssld=use_ssld) return model def SwinTransformer_base_patch4_window7_224(pretrained=False, use_ssld=False, **kwargs): model = SwinTransformer( embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=7, drop_path_rate=0.5, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SwinTransformer_base_patch4_window7_224"], use_ssld=use_ssld) return model def SwinTransformer_base_patch4_window12_384(pretrained=False, use_ssld=False, **kwargs): model = SwinTransformer( img_size=384, embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12, drop_path_rate=0.5, # NOTE: do not appear in offical code **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SwinTransformer_base_patch4_window12_384"], use_ssld=use_ssld) return model def SwinTransformer_large_patch4_window7_224(pretrained=False, use_ssld=False, **kwargs): model = SwinTransformer( embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=7, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SwinTransformer_large_patch4_window7_224"], use_ssld=use_ssld) return model def SwinTransformer_large_patch4_window12_384(pretrained=False, use_ssld=False, **kwargs): model = SwinTransformer( img_size=384, embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SwinTransformer_large_patch4_window12_384"], use_ssld=use_ssld) return model