# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import paddle from typing import Dict, List from ppcls.utils import logger from . import optimizer __all__ = ['build_optimizer'] def build_lr_scheduler(lr_config, epochs, step_each_epoch): from . import learning_rate lr_config.update({'epochs': epochs, 'step_each_epoch': step_each_epoch}) if 'name' in lr_config: lr_name = lr_config.pop('name') lr = getattr(learning_rate, lr_name)(**lr_config) if isinstance(lr, paddle.optimizer.lr.LRScheduler): return lr else: return lr() else: lr = lr_config['learning_rate'] return lr # model_list is None in static graph def build_optimizer(config, epochs, step_each_epoch, model_list=None): optim_config = copy.deepcopy(config) if isinstance(optim_config, dict): # convert {'name': xxx, **optim_cfg} to [{'name': {'scope': xxx, **optim_cfg}}] optim_name = optim_config.pop("name") optim_config: List[Dict[str, Dict]] = [{ optim_name: { 'scope': "all", ** optim_config } }] optim_list = [] lr_list = [] """NOTE: Currently only support optim objets below. 1. single optimizer config. 2. model(entire Arch), backbone, neck, head. 3. loss(entire Loss), specific loss listed in ppcls/loss/__init__.py. """ for optim_item in optim_config: # optim_cfg = {optim_name: {'scope': xxx, **optim_cfg}} # step1 build lr optim_name = list(optim_item.keys())[0] # get optim_name optim_scope_list = optim_item[optim_name].pop('scope').split( ' ') # get optim_scope list optim_cfg = optim_item[optim_name] # get optim_cfg lr = build_lr_scheduler(optim_cfg.pop('lr'), epochs, step_each_epoch) logger.info("build lr ({}) for scope ({}) success..".format( lr.__class__.__name__, optim_scope_list)) # step2 build regularization if 'regularizer' in optim_cfg and optim_cfg['regularizer'] is not None: if 'weight_decay' in optim_cfg: logger.warning( "ConfigError: Only one of regularizer and weight_decay can be set in Optimizer Config. \"weight_decay\" has been ignored." ) reg_config = optim_cfg.pop('regularizer') reg_name = reg_config.pop('name') + 'Decay' reg = getattr(paddle.regularizer, reg_name)(**reg_config) optim_cfg["weight_decay"] = reg logger.info("build regularizer ({}) for scope ({}) success..". format(reg.__class__.__name__, optim_scope_list)) # step3 build optimizer if 'clip_norm' in optim_cfg: clip_norm = optim_cfg.pop('clip_norm') grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm) logger.info("build gradclip ({}) for scope ({}) success..".format( grad_clip.__class__.__name__, optim_scope_list)) else: grad_clip = None optim_model = [] # for static graph if model_list is None: optim = getattr(optimizer, optim_name)( learning_rate=lr, grad_clip=grad_clip, **optim_cfg)(model_list=optim_model) return optim, lr # for dynamic graph for scope in optim_scope_list: if scope == "all": optim_model += model_list elif scope == "model": optim_model += [model_list[0], ] elif scope in ["backbone", "neck", "head"]: optim_model += [getattr(model_list[0], scope, None), ] elif scope == "loss": optim_model += [model_list[1], ] else: optim_model += [ model_list[1].loss_func[i] for i in range(len(model_list[1].loss_func)) if model_list[1].loss_func[i].__class__.__name__ == scope ] # remove invalid items optim_model = [ optim_model[i] for i in range(len(optim_model)) if (optim_model[i] is not None ) and (len(optim_model[i].parameters()) > 0) ] assert len(optim_model) > 0, \ f"optim_model is empty for optim_scope({optim_scope_list})" optim = getattr(optimizer, optim_name)( learning_rate=lr, grad_clip=grad_clip, **optim_cfg)(model_list=optim_model) logger.info("build optimizer ({}) for scope ({}) success..".format( optim.__class__.__name__, optim_scope_list)) optim_list.append(optim) lr_list.append(lr) return optim_list, lr_list