# ImageNet 预训练模型库
## 目录
- [1. 模型库概览图](#1)
- [2. SSLD 知识蒸馏预训练模型](#2)
- [2.1 服务器端知识蒸馏模型](#2.1)
- [2.2 移动端知识蒸馏模型](#2.2)
- [2.3 Intel CPU 端知识蒸馏模型](#2.3)
- [3. PP-LCNet 系列](#3)
- [4. ResNet 系列](#4)
- [5. 移动端系列](#5)
- [6. SEResNeXt 与 Res2Net 系列](#6)
- [7. DPN 与 DenseNet 系列](#7)
- [8. HRNet 系列](#8)
- [9. Inception 系列](#9)
- [10. EfficientNet 与 ResNeXt101_wsl 系列](#10)
- [11. ResNeSt 与 RegNet 系列](#11)
- [12. ViT_and_DeiT 系列](#12)
- [13. RepVGG 系列](#13)
- [14. MixNet 系列](#14)
- [15. ReXNet 系列](#15)
- [16. SwinTransformer 系列](#16)
- [17. LeViT 系列](#17)
- [18. Twins 系列](#18)
- [19. HarDNet 系列](#19)
- [20. DLA 系列](#20)
- [21. RedNet 系列](#21)
- [22. TNT 系列](#22)
- [23. 其他模型](#23)
## 1. 模型库概览图
基于 ImageNet1k 分类数据集,PaddleClas 支持 37 个系列分类网络结构以及对应的 217 个图像分类预训练模型,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现,下面所有的速度指标评估环境如下:
* Arm CPU 的评估环境基于骁龙 855(SD855)。
* Intel CPU 的评估环境基于 Intel(R) Xeon(R) Gold 6148。
* GPU 评估环境基于 T4 机器,在 FP32+TensorRT 配置下运行 500 次测得(去除前 10 次的 warmup 时间)。
* FLOPs 与 Params 通过 `paddle.flops()` 计算得到(PaddlePaddle 版本为 2.2)
常见服务器端模型的精度指标与其预测耗时的变化曲线如下图所示。
![](../../images/models/T4_benchmark/t4.fp32.bs1.main_fps_top1.png)
常见移动端模型的精度指标与其预测耗时、模型存储大小的变化曲线如下图所示。
![](../../images/models/mobile_arm_storage.png)
![](../../images/models/mobile_arm_top1.png)
## 2. SSLD 知识蒸馏预训练模型
基于 SSLD 知识蒸馏的预训练模型列表如下所示,更多关于 SSLD 知识蒸馏方案的介绍可以参考:[SSLD 知识蒸馏文档](./knowledge_distillation.md)。
### 2.1 服务器端知识蒸馏模型
| 模型 | Top-1 Acc | Reference
Top-1 Acc | Acc gain | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|
| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.434 | 6.222 | 7.39 | 21.82 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams) |
| ResNet50_vd_ssld | 0.830 | 0.792 | 0.039 | 3.531 | 8.090 | 8.67 | 25.58 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) |
| ResNet101_vd_ssld | 0.837 | 0.802 | 0.035 | 6.117 | 13.762 | 16.1 | 44.57 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams) |
| Res2Net50_vd_26w_4s_ssld | 0.831 | 0.798 | 0.033 | 4.527 | 9.657 | 8.37 | 25.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams) |
| Res2Net101_vd_
26w_4s_ssld | 0.839 | 0.806 | 0.033 | 8.087 | 17.312 | 16.67 | 45.22 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams) |
| Res2Net200_vd_
26w_4s_ssld | 0.851 | 0.812 | 0.049 | 14.678 | 32.350 | 31.49 | 76.21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) |
| HRNet_W18_C_ssld | 0.812 | 0.769 | 0.043 | 7.406 | 13.297 | 4.14 | 21.29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) |
| HRNet_W48_C_ssld | 0.836 | 0.790 | 0.046 | 13.707 | 34.435 | 34.58 | 77.47 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams) |
| SE_HRNet_W64_C_ssld | 0.848 | - | - | 31.697 | 94.995 | 57.83 | 128.97 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) |
### 2.2 移动端知识蒸馏模型
| 模型 | Top-1 Acc | Reference
Top-1 Acc | Acc gain | SD855 time(ms)
bs=1 | Flops(G) | Params(M) | 模型大小(M) | 下载地址 |
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|
| MobileNetV1_ssld | 0.779 | 0.710 | 0.069 | 32.523 | 1.11 | 4.19 | 16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams) |
| MobileNetV2_ssld | 0.767 | 0.722 | 0.045 | 23.318 | 0.6 | 3.44 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams) |
| MobileNetV3_small_x0_35_ssld | 0.556 | 0.530 | 0.026 | 2.635 | 0.026 | 1.66 | 6.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) |
| MobileNetV3_large_x1_0_ssld | 0.790 | 0.753 | 0.036 | 19.308 | 0.45 | 5.47 | 21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) |
| MobileNetV3_small_x1_0_ssld | 0.713 | 0.682 | 0.031 | 6.546 | 0.123 | 2.94 | 12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) |
| GhostNet_x1_3_ssld | 0.794 | 0.757 | 0.037 | 19.983 | 0.44 | 7.3 | 29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams) |
### 2.3 Intel CPU 端知识蒸馏模型
| 模型 | Top-1 Acc | Reference
Top-1 Acc | Acc gain | Intel-Xeon-Gold-6148 time(ms)
bs=1 | Flops(M) | Params(M) | 下载地址 |
|---------------------|-----------|-----------|---------------|----------------|----------|-----------|-----------------------------------|
| PPLCNet_x0_5_ssld | 0.661 | 0.631 | 0.030 | 2.05 | 47 | 1.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_ssld_pretrained.pdparams) |
| PPLCNet_x1_0_ssld | 0.744 | 0.713 | 0.033 | 2.46 | 161 | 3.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_ssld_pretrained.pdparams) |
| PPLCNet_x2_5_ssld | 0.808 | 0.766 | 0.042 | 5.39 | 906 | 9.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_ssld_pretrained.pdparams) |
* 注: `Reference Top-1 Acc` 表示 PaddleClas 基于 ImageNet1k 数据集训练得到的预训练模型精度。
## 3. PP-LCNet 系列
PP-LCNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[PP-LCNet 系列模型文档](../models/PP-LCNet.md)。
| 模型 | Top-1 Acc | Top-5 Acc | Intel-Xeon-Gold-6148 time(ms)
bs=1 | FLOPs(M) | Params(M) | 下载地址 |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| PPLCNet_x0_25 |0.5186 | 0.7565 | 1.74 | 18 | 1.5 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams) |
| PPLCNet_x0_35 |0.5809 | 0.8083 | 1.92 | 29 | 1.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams) |
| PPLCNet_x0_5 |0.6314 | 0.8466 | 2.05 | 47 | 1.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams) |
| PPLCNet_x0_75 |0.6818 | 0.8830 | 2.29 | 99 | 2.4 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams) |
| PPLCNet_x1_0 |0.7132 | 0.9003 | 2.46 | 161 | 3.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams) |
| PPLCNet_x1_5 |0.7371 | 0.9153 | 3.19 | 342 | 4.5 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams) |
| PPLCNet_x2_0 |0.7518 | 0.9227 | 4.27 | 590 | 6.5 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams) |
| PPLCNet_x2_5 |0.7660 | 0.9300 | 5.39 | 906 | 9.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams) |
## 4. ResNet 系列
ResNet 及其 Vd 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNet 及其 Vd 系列模型文档](../models/ResNet_and_vd.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------|
| ResNet18 | 0.7098 | 0.8992 | 1.45606 | 3.56305 | 3.66 | 11.69 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams) |
| ResNet18_vd | 0.7226 | 0.9080 | 1.54557 | 3.85363 | 4.14 | 11.71 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams) |
| ResNet34 | 0.7457 | 0.9214 | 2.34957 | 5.89821 | 7.36 | 21.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams) |
| ResNet34_vd | 0.7598 | 0.9298 | 2.43427 | 6.22257 | 7.39 | 21.82 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams) |
| ResNet34_vd_ssld | 0.7972 | 0.9490 | 2.43427 | 6.22257 | 7.39 | 21.82 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams) |
| ResNet50 | 0.7650 | 0.9300 | 3.47712 | 7.84421 | 8.19 | 25.56 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams) |
| ResNet50_vc | 0.7835 | 0.9403 | 3.52346 | 8.10725 | 8.67 | 25.58 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams) |
| ResNet50_vd | 0.7912 | 0.9444 | 3.53131 | 8.09057 | 8.67 | 25.58 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams) |
| ResNet101 | 0.7756 | 0.9364 | 6.07125 | 13.40573 | 15.52 | 44.55 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams) |
| ResNet101_vd | 0.8017 | 0.9497 | 6.11704 | 13.76222 | 16.1 | 44.57 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams) |
| ResNet152 | 0.7826 | 0.9396 | 8.50198 | 19.17073 | 23.05 | 60.19 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams) |
| ResNet152_vd | 0.8059 | 0.9530 | 8.54376 | 19.52157 | 23.53 | 60.21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams) |
| ResNet200_vd | 0.8093 | 0.9533 | 10.80619 | 25.01731 | 30.53 | 74.74 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams) |
| ResNet50_vd_
ssld | 0.8300 | 0.9640 | 3.53131 | 8.09057 | 8.67 | 25.58 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) |
| ResNet101_vd_
ssld | 0.8373 | 0.9669 | 6.11704 | 13.76222 | 16.1 | 44.57 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams) |
## 5. 移动端系列
移动端系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[移动端系列模型文档](../models/Mobile.md)。
| 模型 | Top-1 Acc | Top-5 Acc | SD855 time(ms)
bs=1 | Flops(G) | Params(M) | 模型大小(M) | 下载地址 |
|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|
| MobileNetV1_
x0_25 | 0.5143 | 0.7546 | 3.21985 | 0.07 | 0.46 | 1.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams) |
| MobileNetV1_
x0_5 | 0.6352 | 0.8473 | 9.579599 | 0.28 | 1.31 | 5.2 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams) |
| MobileNetV1_
x0_75 | 0.6881 | 0.8823 | 19.436399 | 0.63 | 2.55 | 10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams) |
| MobileNetV1 | 0.7099 | 0.8968 | 32.523048 | 1.11 | 4.19 | 16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams) |
| MobileNetV1_
ssld | 0.7789 | 0.9394 | 32.523048 | 1.11 | 4.19 | 16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams) |
| MobileNetV2_
x0_25 | 0.5321 | 0.7652 | 3.79925 | 0.05 | 1.5 | 6.1 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams) |
| MobileNetV2_
x0_5 | 0.6503 | 0.8572 | 8.7021 | 0.17 | 1.93 | 7.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams) |
| MobileNetV2_
x0_75 | 0.6983 | 0.8901 | 15.531351 | 0.35 | 2.58 | 10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams) |
| MobileNetV2 | 0.7215 | 0.9065 | 23.317699 | 0.6 | 3.44 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams) |
| MobileNetV2_
x1_5 | 0.7412 | 0.9167 | 45.623848 | 1.32 | 6.76 | 26 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams) |
| MobileNetV2_
x2_0 | 0.7523 | 0.9258 | 74.291649 | 2.32 | 11.13 | 43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams) |
| MobileNetV2_
ssld | 0.7674 | 0.9339 | 23.317699 | 0.6 | 3.44 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams) |
| MobileNetV3_
large_x1_25 | 0.7641 | 0.9295 | 28.217701 | 0.714 | 7.44 | 29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams) |
| MobileNetV3_
large_x1_0 | 0.7532 | 0.9231 | 19.30835 | 0.45 | 5.47 | 21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams) |
| MobileNetV3_
large_x0_75 | 0.7314 | 0.9108 | 13.5646 | 0.296 | 3.91 | 16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams) |
| MobileNetV3_
large_x0_5 | 0.6924 | 0.8852 | 7.49315 | 0.138 | 2.67 | 11 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams) |
| MobileNetV3_
large_x0_35 | 0.6432 | 0.8546 | 5.13695 | 0.077 | 2.1 | 8.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams) |
| MobileNetV3_
small_x1_25 | 0.7067 | 0.8951 | 9.2745 | 0.195 | 3.62 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams) |
| MobileNetV3_
small_x1_0 | 0.6824 | 0.8806 | 6.5463 | 0.123 | 2.94 | 12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams) |
| MobileNetV3_
small_x0_75 | 0.6602 | 0.8633 | 5.28435 | 0.088 | 2.37 | 9.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams) |
| MobileNetV3_
small_x0_5 | 0.5921 | 0.8152 | 3.35165 | 0.043 | 1.9 | 7.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams) |
| MobileNetV3_
small_x0_35 | 0.5303 | 0.7637 | 2.6352 | 0.026 | 1.66 | 6.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams) |
| MobileNetV3_
small_x0_35_ssld | 0.5555 | 0.7771 | 2.6352 | 0.026 | 1.66 | 6.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) |
| MobileNetV3_
large_x1_0_ssld | 0.7896 | 0.9448 | 19.30835 | 0.45 | 5.47 | 21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) |
| MobileNetV3_small_
x1_0_ssld | 0.7129 | 0.9010 | 6.5463 | 0.123 | 2.94 | 12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) |
| ShuffleNetV2 | 0.6880 | 0.8845 | 10.941 | 0.28 | 2.26 | 9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams) |
| ShuffleNetV2_
x0_25 | 0.4990 | 0.7379 | 2.329 | 0.03 | 0.6 | 2.7 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams) |
| ShuffleNetV2_
x0_33 | 0.5373 | 0.7705 | 2.64335 | 0.04 | 0.64 | 2.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams) |
| ShuffleNetV2_
x0_5 | 0.6032 | 0.8226 | 4.2613 | 0.08 | 1.36 | 5.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams) |
| ShuffleNetV2_
x1_5 | 0.7163 | 0.9015 | 19.3522 | 0.58 | 3.47 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams) |
| ShuffleNetV2_
x2_0 | 0.7315 | 0.9120 | 34.770149 | 1.12 | 7.32 | 28 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams) |
| ShuffleNetV2_
swish | 0.7003 | 0.8917 | 16.023151 | 0.29 | 2.26 | 9.1 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams) |
| GhostNet_
x0_5 | 0.6688 | 0.8695 | 5.7143 | 0.082 | 2.6 | 10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams) |
| GhostNet_
x1_0 | 0.7402 | 0.9165 | 13.5587 | 0.294 | 5.2 | 20 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams) |
| GhostNet_
x1_3 | 0.7579 | 0.9254 | 19.9825 | 0.44 | 7.3 | 29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams) |
| GhostNet_
x1_3_ssld | 0.7938 | 0.9449 | 19.9825 | 0.44 | 7.3 | 29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams) |
| ESNet_x0_25 | 62.48 | 83.46 || 0.031 | 2.83 | 11 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_25_pretrained.pdparams) |
| ESNet_x0_5 | 68.82 | 88.04 || 0.067 | 3.25 | 13 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_5_pretrained.pdparams) |
| ESNet_x0_75 | 72.24 | 90.45 || 0.124 | 3.87 | 15 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_75_pretrained.pdparams) |
| ESNet_x1_0 | 73.92 | 91.40 || 0.197 | 4.64 | 18 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x1_0_pretrained.pdparams) |
## 6. SEResNeXt 与 Res2Net 系列
SEResNeXt 与 Res2Net 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[SEResNeXt 与 Res2Net 系列模型文档](../models/SEResNext_and_Res2Net.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
| Res2Net50_
26w_4s | 0.7933 | 0.9457 | 4.47188 | 9.65722 | 8.52 | 25.7 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_26w_4s_pretrained.pdparams) |
| Res2Net50_vd_
26w_4s | 0.7975 | 0.9491 | 4.52712 | 9.93247 | 8.37 | 25.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_pretrained.pdparams) |
| Res2Net50_
14w_8s | 0.7946 | 0.9470 | 5.4026 | 10.60273 | 9.01 | 25.72 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_14w_8s_pretrained.pdparams) |
| Res2Net101_vd_
26w_4s | 0.8064 | 0.9522 | 8.08729 | 17.31208 | 16.67 | 45.22 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_pretrained.pdparams) |
| Res2Net200_vd_
26w_4s | 0.8121 | 0.9571 | 14.67806 | 32.35032 | 31.49 | 76.21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_pretrained.pdparams) |
| Res2Net200_vd_
26w_4s_ssld | 0.8513 | 0.9742 | 14.67806 | 32.35032 | 31.49 | 76.21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) |
| ResNeXt50_
32x4d | 0.7775 | 0.9382 | 7.56327 | 10.6134 | 8.02 | 23.64 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams) |
| ResNeXt50_vd_
32x4d | 0.7956 | 0.9462 | 7.62044 | 11.03385 | 8.5 | 23.66 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_32x4d_pretrained.pdparams) |
| ResNeXt50_
64x4d | 0.7843 | 0.9413 | 13.80962 | 18.4712 | 15.06 | 42.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams) |
| ResNeXt50_vd_
64x4d | 0.8012 | 0.9486 | 13.94449 | 18.88759 | 15.54 | 42.38 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_64x4d_pretrained.pdparams) |
| ResNeXt101_
32x4d | 0.7865 | 0.9419 | 16.21503 | 19.96568 | 15.01 | 41.54 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams) |
| ResNeXt101_vd_
32x4d | 0.8033 | 0.9512 | 16.28103 | 20.25611 | 15.49 | 41.56 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_32x4d_pretrained.pdparams) |
| ResNeXt101_
64x4d | 0.7835 | 0.9452 | 30.4788 | 36.29801 | 29.05 | 78.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams) |
| ResNeXt101_vd_
64x4d | 0.8078 | 0.9520 | 30.40456 | 36.77324 | 29.53 | 78.14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams) |
| ResNeXt152_
32x4d | 0.7898 | 0.9433 | 24.86299 | 29.36764 | 22.01 | 56.28 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams) |
| ResNeXt152_vd_
32x4d | 0.8072 | 0.9520 | 25.03258 | 30.08987 | 22.49 | 56.3 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_32x4d_pretrained.pdparams) |
| ResNeXt152_
64x4d | 0.7951 | 0.9471 | 46.7564 | 56.34108 | 43.03 | 107.57 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams) |
| ResNeXt152_vd_
64x4d | 0.8108 | 0.9534 | 47.18638 | 57.16257 | 43.52 | 107.59 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_64x4d_pretrained.pdparams) |
| SE_ResNet18_vd | 0.7333 | 0.9138 | 1.7691 | 4.19877 | 4.14 | 11.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams) |
| SE_ResNet34_vd | 0.7651 | 0.9320 | 2.88559 | 7.03291 | 7.84 | 21.98 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams) |
| SE_ResNet50_vd | 0.7952 | 0.9475 | 4.28393 | 10.38846 | 8.67 | 28.09 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams) |
| SE_ResNeXt50_
32x4d | 0.7844 | 0.9396 | 8.74121 | 13.563 | 8.02 | 26.16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams) |
| SE_ResNeXt50_vd_
32x4d | 0.8024 | 0.9489 | 9.17134 | 14.76192 | 10.76 | 26.28 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_vd_32x4d_pretrained.pdparams) |
| SE_ResNeXt101_
32x4d | 0.7939 | 0.9443 | 18.82604 | 25.31814 | 15.02 | 46.28 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams) |
| SENet154_vd | 0.8140 | 0.9548 | 53.79794 | 66.31684 | 45.83 | 114.29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams) |
## 7. DPN 与 DenseNet 系列
DPN 与 DenseNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[DPN 与 DenseNet 系列模型文档](../models/DPN_DenseNet.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|
| DenseNet121 | 0.7566 | 0.9258 | 4.40447 | 9.32623 | 5.69 | 7.98 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams) |
| DenseNet161 | 0.7857 | 0.9414 | 10.39152 | 22.15555 | 15.49 | 28.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams) |
| DenseNet169 | 0.7681 | 0.9331 | 6.43598 | 12.98832 | 6.74 | 14.15 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams) |
| DenseNet201 | 0.7763 | 0.9366 | 8.20652 | 17.45838 | 8.61 | 20.01 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams) |
| DenseNet264 | 0.7796 | 0.9385 | 12.14722 | 26.27707 | 11.54 | 33.37 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams) |
| DPN68 | 0.7678 | 0.9343 | 11.64915 | 12.82807 | 4.03 | 10.78 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams) |
| DPN92 | 0.7985 | 0.9480 | 18.15746 | 23.87545 | 12.54 | 36.29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams) |
| DPN98 | 0.8059 | 0.9510 | 21.18196 | 33.23925 | 22.22 | 58.46 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams) |
| DPN107 | 0.8089 | 0.9532 | 27.62046 | 52.65353 | 35.06 | 82.97 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams) |
| DPN131 | 0.8070 | 0.9514 | 28.33119 | 46.19439 | 30.51 | 75.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams) |
## 8. HRNet 系列
HRNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[HRNet 系列模型文档](../models/HRNet.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------|
| HRNet_W18_C | 0.7692 | 0.9339 | 7.40636 | 13.29752 | 4.14 | 21.29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams) |
| HRNet_W18_C_ssld | 0.81162 | 0.95804 | 7.40636 | 13.29752 | 4.14 | 21.29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) |
| HRNet_W30_C | 0.7804 | 0.9402 | 9.57594 | 17.35485 | 16.23 | 37.71 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams) |
| HRNet_W32_C | 0.7828 | 0.9424 | 9.49807 | 17.72921 | 17.86 | 41.23 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams) |
| HRNet_W40_C | 0.7877 | 0.9447 | 12.12202 | 25.68184 | 25.41 | 57.55 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams) |
| HRNet_W44_C | 0.7900 | 0.9451 | 13.19858 | 32.25202 | 29.79 | 67.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams) |
| HRNet_W48_C | 0.7895 | 0.9442 | 13.70761 | 34.43572 | 34.58 | 77.47 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams) |
| HRNet_W48_C_ssld | 0.8363 | 0.9682 | 13.70761 | 34.43572 | 34.58 | 77.47 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams) |
| HRNet_W64_C | 0.7930 | 0.9461 | 17.57527 | 47.9533 | 57.83 | 128.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams) |
| SE_HRNet_W64_C_ssld | 0.8475 | 0.9726 | 31.69770 | 94.99546 | 57.83 | 128.97 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) |
## 9. Inception 系列
Inception 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[Inception 系列模型文档](../models/Inception.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------|
| GoogLeNet | 0.7070 | 0.8966 | 1.88038 | 4.48882 | 2.88 | 8.46 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams) |
| Xception41 | 0.7930 | 0.9453 | 4.96939 | 17.01361 | 16.74 | 22.69 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams) |
| Xception41_deeplab | 0.7955 | 0.9438 | 5.33541 | 17.55938 | 18.16 | 26.73 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_deeplab_pretrained.pdparams) |
| Xception65 | 0.8100 | 0.9549 | 7.26158 | 25.88778 | 25.95 | 35.48 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams) |
| Xception65_deeplab | 0.8032 | 0.9449 | 7.60208 | 26.03699 | 27.37 | 39.52 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_deeplab_pretrained.pdparams) |
| Xception71 | 0.8111 | 0.9545 | 8.72457 | 31.55549 | 31.77 | 37.28 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams) |
| InceptionV3 | 0.7914 | 0.9459 | 6.64054 | 13.53630 | 11.46 | 23.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams) |
| InceptionV4 | 0.8077 | 0.9526 | 12.99342 | 25.23416 | 24.57 | 42.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams) |
## 10. EfficientNet 与 ResNeXt101_wsl 系列
EfficientNet 与 ResNeXt101_wsl 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[EfficientNet 与 ResNeXt101_wsl 系列模型文档](../models/EfficientNet_and_ResNeXt101_wsl.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
| ResNeXt101_
32x8d_wsl | 0.8255 | 0.9674 | 18.52528 | 34.25319 | 29.14 | 78.44 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams) |
| ResNeXt101_
32x16d_wsl | 0.8424 | 0.9726 | 25.60395 | 71.88384 | 57.55 | 152.66 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16d_wsl_pretrained.pdparams) |
| ResNeXt101_
32x32d_wsl | 0.8497 | 0.9759 | 54.87396 | 160.04337 | 115.17 | 303.11 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams) |
| ResNeXt101_
32x48d_wsl | 0.8537 | 0.9769 | 99.01698256 | 315.91261 | 173.58 | 456.2 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x48d_wsl_pretrained.pdparams) |
| Fix_ResNeXt101_
32x48d_wsl | 0.8626 | 0.9797 | 160.0838242 | 595.99296 | 354.23 | 456.2 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNeXt101_32x48d_wsl_pretrained.pdparams) |
| EfficientNetB0 | 0.7738 | 0.9331 | 3.442 | 6.11476 | 0.72 | 5.1 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams) |
| EfficientNetB1 | 0.7915 | 0.9441 | 5.3322 | 9.41795 | 1.27 | 7.52 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams) |
| EfficientNetB2 | 0.7985 | 0.9474 | 6.29351 | 10.95702 | 1.85 | 8.81 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams) |
| EfficientNetB3 | 0.8115 | 0.9541 | 7.67749 | 16.53288 | 3.43 | 11.84 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams) |
| EfficientNetB4 | 0.8285 | 0.9623 | 12.15894 | 30.94567 | 8.29 | 18.76 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams) |
| EfficientNetB5 | 0.8362 | 0.9672 | 20.48571 | 61.60252 | 19.51 | 29.61 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams) |
| EfficientNetB6 | 0.8400 | 0.9688 | 32.62402 | - | 36.27 | 42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams) |
| EfficientNetB7 | 0.8430 | 0.9689 | 53.93823 | - | 72.35 | 64.92 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams) |
| EfficientNetB0_
small | 0.7580 | 0.9258 | 2.3076 | 4.71886 | 0.72 | 4.65 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams) |
## 11. ResNeSt 与 RegNet 系列
ResNeSt 与 RegNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNeSt 与 RegNet 系列模型文档](../models/ResNeSt_RegNet.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
| ResNeSt50_
fast_1s1x64d | 0.8035 | 0.9528 | 3.45405 | 8.72680 | 8.68 | 26.3 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams) |
| ResNeSt50 | 0.8083 | 0.9542 | 6.69042 | 8.01664 | 10.78 | 27.5 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams) |
| RegNetX_4GF | 0.785 | 0.9416 | 6.46478 | 11.19862 | 8 | 22.1 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams) |
## 12. ViT_and_DeiT 系列
ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标如下表所示. 更多关于该系列模型的介绍可以参考: [ViT_and_DeiT 系列模型文档](../models/ViT_and_DeiT.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|
| ViT_small_
patch16_224 | 0.7769 | 0.9342 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) |
| ViT_base_
patch16_224 | 0.8195 | 0.9617 | - | - | | 86 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams) |
| ViT_base_
patch16_384 | 0.8414 | 0.9717 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams) |
| ViT_base_
patch32_384 | 0.8176 | 0.9613 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams) |
| ViT_large_
patch16_224 | 0.8323 | 0.9650 | - | - | | 307 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) |
| ViT_large_
patch16_384 | 0.8513 | 0.9736 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) |
| ViT_large_
patch32_384 | 0.8153 | 0.9608 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|
| DeiT_tiny_
patch16_224 | 0.718 | 0.910 | - | - | | 5 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams) |
| DeiT_small_
patch16_224 | 0.796 | 0.949 | - | - | | 22 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams) |
| DeiT_base_
patch16_224 | 0.817 | 0.957 | - | - | | 86 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams) |
| DeiT_base_
patch16_384 | 0.830 | 0.962 | - | - | | 87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams) |
| DeiT_tiny_
distilled_patch16_224 | 0.741 | 0.918 | - | - | | 6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams) |
| DeiT_small_
distilled_patch16_224 | 0.809 | 0.953 | - | - | | 22 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) |
| DeiT_base_
distilled_patch16_224 | 0.831 | 0.964 | - | - | | 87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) |
| DeiT_base_
distilled_patch16_384 | 0.851 | 0.973 | - | - | | 88 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) |
## 13. RepVGG 系列
关于 RepVGG 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[RepVGG 系列模型文档](../models/RepVGG.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
| RepVGG_A0 | 0.7131 | 0.9016 | | | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams) |
| RepVGG_A1 | 0.7380 | 0.9146 | | | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams) |
| RepVGG_A2 | 0.7571 | 0.9264 | | | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams) |
| RepVGG_B0 | 0.7450 | 0.9213 | | | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams) |
| RepVGG_B1 | 0.7773 | 0.9385 | | | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams) |
| RepVGG_B2 | 0.7813 | 0.9410 | | | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams) |
| RepVGG_B1g2 | 0.7732 | 0.9359 | | | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams) |
| RepVGG_B1g4 | 0.7675 | 0.9335 | | | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams) |
| RepVGG_B2g4 | 0.7881 | 0.9448 | | | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams) |
| RepVGG_B3g4 | 0.7965 | 0.9485 | | | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams) |
## 14. MixNet 系列
关于 MixNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[MixNet 系列模型文档](../models/MixNet.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(M) | Params(M) | 下载地址 |
| -------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| MixNet_S | 0.7628 | 0.9299 | | | 252.977 | 4.167 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_S_pretrained.pdparams) |
| MixNet_M | 0.7767 | 0.9364 | | | 357.119 | 5.065 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_M_pretrained.pdparams) |
| MixNet_L | 0.7860 | 0.9437 | | | 579.017 | 7.384 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_L_pretrained.pdparams) |
## 15. ReXNet 系列
关于 ReXNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[ReXNet 系列模型文档](../models/ReXNet.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| ReXNet_1_0 | 0.7746 | 0.9370 | | | 0.415 | 4.838 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams) |
| ReXNet_1_3 | 0.7913 | 0.9464 | | | 0.683 | 7.611 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams) |
| ReXNet_1_5 | 0.8006 | 0.9512 | | | 0.900 | 9.791 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams) |
| ReXNet_2_0 | 0.8122 | 0.9536 | | | 1.561 | 16.449 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams) |
| ReXNet_3_0 | 0.8209 | 0.9612 | | | 3.445 | 34.833 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams) |
## 16. SwinTransformer 系列
关于 SwinTransformer 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[SwinTransformer 系列模型文档](../models/SwinTransformer.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| SwinTransformer_tiny_patch4_window7_224 | 0.8069 | 0.9534 | | | 4.5 | 28 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams) |
| SwinTransformer_small_patch4_window7_224 | 0.8275 | 0.9613 | | | 8.7 | 50 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams) |
| SwinTransformer_base_patch4_window7_224 | 0.8300 | 0.9626 | | | 15.4 | 88 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams) |
| SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 | | | 47.1 | 88 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams) |
| SwinTransformer_base_patch4_window7_224[1] | 0.8487 | 0.9746 | | | 15.4 | 88 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams) |
| SwinTransformer_base_patch4_window12_384[1] | 0.8642 | 0.9807 | | | 47.1 | 88 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams) |
| SwinTransformer_large_patch4_window7_224[1] | 0.8596 | 0.9783 | | | 34.5 | 197 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) |
| SwinTransformer_large_patch4_window12_384[1] | 0.8719 | 0.9823 | | | 103.9 | 197 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) |
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
## 17. LeViT 系列
关于 LeViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[LeViT 系列模型文档](../models/LeViT.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(M) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| LeViT_128S | 0.7598 | 0.9269 | | | 305 | 7.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams) |
| LeViT_128 | 0.7810 | 0.9371 | | | 406 | 9.2 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams) |
| LeViT_192 | 0.7934 | 0.9446 | | | 658 | 11 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams) |
| LeViT_256 | 0.8085 | 0.9497 | | | 1120 | 19 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams) |
| LeViT_384 | 0.8191 | 0.9551 | | | 2353 | 39 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_384_pretrained.pdparams) |
**注**:与 Reference 的精度差异源于数据预处理不同及未使用蒸馏的 head 作为输出。
## 18. Twins 系列
关于 Twins 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[Twins 系列模型文档](../models/Twins.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| pcpvt_small | 0.8082 | 0.9552 | | |3.7 | 24.1 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams) |
| pcpvt_base | 0.8242 | 0.9619 | | | 6.4 | 43.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams) |
| pcpvt_large | 0.8273 | 0.9650 | | | 9.5 | 60.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams) |
| alt_gvt_small | 0.8140 | 0.9546 | | |2.8 | 24 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams) |
| alt_gvt_base | 0.8294 | 0.9621 | | | 8.3 | 56 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams) |
| alt_gvt_large | 0.8331 | 0.9642 | | | 14.8 | 99.2 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams) |
**注**:与 Reference 的精度差异源于数据预处理不同。
## 19. HarDNet 系列
关于 HarDNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[HarDNet 系列模型文档](../models/HarDNet.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| HarDNet39_ds | 0.7133 |0.8998 | | | 0.4 | 3.5 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet39_ds_pretrained.pdparams) |
| HarDNet68_ds |0.7362 | 0.9152 | | | 0.8 | 4.2 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_ds_pretrained.pdparams) |
| HarDNet68| 0.7546 | 0.9265 | | | 4.3 | 17.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_pretrained.pdparams) |
| HarDNet85 | 0.7744 | 0.9355 | | | 9.1 | 36.7 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet85_pretrained.pdparams) |
## 20. DLA 系列
关于 DLA 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[DLA 系列模型文档](../models/DLA.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| DLA102 | 0.7893 |0.9452 | | | 7.2 | 33.3 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102_pretrained.pdparams) |
| DLA102x2 |0.7885 | 0.9445 | | | 9.3 | 41.4 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x2_pretrained.pdparams) |
| DLA102x| 0.781 | 0.9400 | | | 5.9 | 26.4 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x_pretrained.pdparams) |
| DLA169 | 0.7809 | 0.9409 | | | 11.6 | 53.5 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA169_pretrained.pdparams) |
| DLA34 | 0.7603 | 0.9298 | | | 3.1 | 15.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA34_pretrained.pdparams) |
| DLA46_c |0.6321 | 0.853 | | | 0.5 | 1.3 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA46_c_pretrained.pdparams) |
| DLA60 | 0.7610 | 0.9292 | | | 4.2 | 22.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60_pretrained.pdparams) |
| DLA60x_c | 0.6645 | 0.8754 | | | 0.6 | 1.3 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_c_pretrained.pdparams) |
| DLA60x | 0.7753 | 0.9378 | | | 3.5 | 17.4 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_pretrained.pdparams) |
## 21. RedNet 系列
关于 RedNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[RedNet 系列模型文档](../models/RedNet.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| RedNet26 | 0.7595 |0.9319 | | | 1.7 | 9.2 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet26_pretrained.pdparams) |
| RedNet38 |0.7747 | 0.9356 | | | 2.2 | 12.4 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet38_pretrained.pdparams) |
| RedNet50| 0.7833 | 0.9417 | | | 2.7 | 15.5 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet50_pretrained.pdparams) |
| RedNet101 | 0.7894 | 0.9436 | | | 4.7 | 25.7 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet101_pretrained.pdparams) |
| RedNet152 | 0.7917 | 0.9440 | | | 6.8 | 34.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet152_pretrained.pdparams) |
## 22. TNT 系列
关于 TNT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[TNT 系列模型文档](../models/TNT.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| TNT_small | 0.8121 |0.9563 | | | 5.2 | 23.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams) | |
**注**:TNT 模型的数据预处理部分 `NormalizeImage` 中的 `mean` 与 `std` 均为 0.5。
## 23. 其他模型
关于 AlexNet、SqueezeNet 系列、VGG 系列、DarkNet53 等模型的精度、速度指标如下表所示,更多介绍可以参考:[其他模型文档](../models/Others.md)。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
| AlexNet | 0.567 | 0.792 | 1.44993 | 2.46696 | 1.370 | 61.090 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams) |
| SqueezeNet1_0 | 0.596 | 0.817 | 0.96736 | 2.53221 | 1.550 | 1.240 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams) |
| SqueezeNet1_1 | 0.601 | 0.819 | 0.76032 | 1.877 | 0.690 | 1.230 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams) |
| VGG11 | 0.693 | 0.891 | 3.90412 | 9.51147 | 15.090 | 132.850 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG11_pretrained.pdparams) |
| VGG13 | 0.700 | 0.894 | 4.64684 | 12.61558 | 22.480 | 133.030 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG13_pretrained.pdparams) |
| VGG16 | 0.720 | 0.907 | 5.61769 | 16.40064 | 30.810 | 138.340 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG16_pretrained.pdparams) |
| VGG19 | 0.726 | 0.909 | 6.65221 | 20.4334 | 39.130 | 143.650 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG19_pretrained.pdparams) |
| DarkNet53 | 0.780 | 0.941 | 4.10829 | 12.1714 | 18.580 | 41.600 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams) |