# global configs Global: checkpoints: null pretrained_model: '../test/torch2paddle_cifar10' output_dir: ./output_25 device: gpu save_interval: -1 eval_during_train: True eval_interval: 1 epochs: 1024 iter_per_epoch: 1024 print_batch_step: 20 use_visualdl: False use_dali: False train_mode: fixmatch # used for static mode and model export image_shape: [3, 224, 224] save_inference_dir: ./inference SSL: tempture: 1 threshold: 0.95 EMA: decay: 0.999 # AMP: # scale_loss: 65536 # use_dynamic_loss_scaling: True # # O1: mixed fp16 # level: O1 # model architecture Arch: name: WideResNet depth: 28 widen_factor: 2 dropout: 0 num_classes: 10 # loss function config for traing/eval process Loss: Train: - CELoss: weight: 1.0 reduction: "mean" Eval: - CELoss: weight: 1.0 UnLabelLoss: Train: - CELoss: weight: 1.0 reduction: "none" Optimizer: name: Momentum momentum: 0.9 use_nesterov: True no_weight_decay_name: bn bias weight_decay: 0.0005 lr: name: CosineFixmatch learning_rate: 0.03 num_warmup_steps: 0 num_cycles: 0.4375 # data loader for train and eval DataLoader: Train: dataset: name: Cifar10 data_file: None mode: 'train' download: True backend: 'pil' sample_per_label: 25 expand_labels: 263 transform_ops: - RandFlipImage: flip_code: 1 - Pad_paddle_vision: padding: 4 padding_mode: reflect - RandCropImageV2: size: [32, 32] - NormalizeImage: scale: 1.0/255.0 mean: [0.4914, 0.4822, 0.4465] std: [0.2471, 0.2435, 0.2616] order: hwc sampler: name: DistributedBatchSampler batch_size: 64 drop_last: True shuffle: True loader: num_workers: 8 use_shared_memory: True UnLabelTrain: dataset: name: Cifar10 data_file: None mode: 'train' download: True backend: 'pil' sample_per_label: None transform_ops_weak: - RandFlipImage: flip_code: 1 - Pad_paddle_vision: padding: 4 padding_mode: reflect - RandCropImageV2: size: [32, 32] - NormalizeImage: scale: 1.0/255.0 mean: [0.4914, 0.4822, 0.4465] std: [0.2471, 0.2435, 0.2616] order: hwc transform_ops_strong: - RandFlipImage: flip_code: 1 - Pad_paddle_vision: padding: 4 padding_mode: reflect - RandCropImageV2: size: [32, 32] - RandAugment: num_layers: 2 magnitude: 10 - NormalizeImage: scale: 1.0/255.0 mean: [0.4914, 0.4822, 0.4465] std: [0.2471, 0.2435, 0.2616] order: hwc sampler: name: DistributedBatchSampler batch_size: 448 drop_last: True shuffle: True loader: num_workers: 8 use_shared_memory: True Eval: dataset: name: Cifar10 data_file: None mode: 'test' download: True backend: 'pil' sample_per_label: None transform_ops: - NormalizeImage: scale: 1.0/255.0 mean: [0.4914, 0.4822, 0.4465] std: [0.2471, 0.2435, 0.2616] order: hwc sampler: name: DistributedBatchSampler batch_size: 64 drop_last: False shuffle: True loader: num_workers: 4 use_shared_memory: True Metric: Eval: - TopkAcc: topk: [1, 5]