# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.nn as nn class TopkAcc(nn.Layer): def __init__(self, topk=(1, 5)): super().__init__() assert isinstance(topk, (int, list, tuple)) if isinstance(topk, int): topk = [topk] self.topk = topk def forward(self, x, label): if isinstance(x, dict): x = x["logits"] metric_dict = dict() for k in self.topk: metric_dict["top{}".format(k)] = paddle.metric.accuracy( x, label, k=k) return metric_dict class mAP(nn.Layer): def __init__(self): super().__init__() def forward(self, similarities_matrix, query_img_id, gallery_img_id, *args): metric_dict = dict() choosen_indices = paddle.argsort( similarities_matrix, axis=1, descending=True) gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0]) gallery_labels_transpose = paddle.broadcast_to( gallery_labels_transpose, shape=[ choosen_indices.shape[0], gallery_labels_transpose.shape[1] ]) choosen_label = paddle.index_sample(gallery_labels_transpose, choosen_indices) equal_flag = paddle.equal(choosen_label, query_img_id) equal_flag = paddle.cast(equal_flag, 'float32') acc_sum = paddle.cumsum(equal_flag, axis=1) div = paddle.arange(acc_sum.shape[1]).astype("float32") + 1 precision = paddle.divide(acc_sum, div) #calc map precision_mask = paddle.multiply(equal_flag, precision) ap = paddle.sum(precision_mask, axis=1) / paddle.sum(equal_flag, axis=1) metric_dict["mAP"] = paddle.mean(ap).numpy()[0] return metric_dict class mINP(nn.Layer): def __init__(self): super().__init__() def forward(self, similarities_matrix, query_img_id, gallery_img_id, *args): metric_dict = dict() choosen_indices = paddle.argsort( similarities_matrix, axis=1, descending=True) gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0]) gallery_labels_transpose = paddle.broadcast_to( gallery_labels_transpose, shape=[ choosen_indices.shape[0], gallery_labels_transpose.shape[1] ]) choosen_label = paddle.index_sample(gallery_labels_transpose, choosen_indices) tmp = paddle.equal(choosen_label, query_img_id) tmp = paddle.cast(tmp, 'float64') #do accumulative sum div = paddle.arange(tmp.shape[1]).astype("float64") + 2 minus = paddle.divide(tmp, div) auxilary = paddle.subtract(tmp, minus) hard_index = paddle.argmax(auxilary, axis=1).astype("float64") all_INP = paddle.divide(paddle.sum(tmp, axis=1), hard_index) mINP = paddle.mean(all_INP) metric_dict["mINP"] = mINP.numpy()[0] return metric_dict class Recallk(nn.Layer): def __init__(self, topk=(1, 5)): super().__init__() assert isinstance(topk, (int, list, tuple)) if isinstance(topk, int): topk = [topk] self.topk = topk def forward(self, similarities_matrix, query_img_id, gallery_img_id, keep_mask): metric_dict = dict() #get cmc choosen_indices = paddle.argsort( similarities_matrix, axis=1, descending=True) gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0]) gallery_labels_transpose = paddle.broadcast_to( gallery_labels_transpose, shape=[ choosen_indices.shape[0], gallery_labels_transpose.shape[1] ]) choosen_label = paddle.index_sample(gallery_labels_transpose, choosen_indices) equal_flag = paddle.equal(choosen_label, query_img_id) if keep_mask is not None: keep_mask = paddle.index_sample( keep_mask.astype('float32'), choosen_indices) equal_flag = paddle.logical_and(equal_flag, keep_mask.astype('bool')) equal_flag = paddle.cast(equal_flag, 'float32') real_query_num = paddle.sum(equal_flag, axis=1) real_query_num = paddle.sum( paddle.greater_than(real_query_num, paddle.to_tensor(0.)).astype( "float32")) acc_sum = paddle.cumsum(equal_flag, axis=1) mask = paddle.greater_than(acc_sum, paddle.to_tensor(0.)).astype("float32") all_cmc = (paddle.sum(mask, axis=0) / real_query_num).numpy() for k in self.topk: metric_dict["recall{}".format(k)] = all_cmc[k - 1] return metric_dict class DistillationTopkAcc(TopkAcc): def __init__(self, model_key, feature_key=None, topk=(1, 5)): super().__init__(topk=topk) self.model_key = model_key self.feature_key = feature_key def forward(self, x, label): x = x[self.model_key] if self.feature_key is not None: x = x[self.feature_key] return super().forward(x, label) class GoogLeNetTopkAcc(TopkAcc): def __init__(self, topk=(1, 5)): super().__init__() assert isinstance(topk, (int, list, tuple)) if isinstance(topk, int): topk = [topk] self.topk = topk def forward(self, x, label): return super().forward(x[0], label)